Search results for "Python"

showing 10 items of 160 documents

Daudzspēlētāju kāršu spēle

2015

Kvalifikācijas darbs apraksta kāršu spēles izveidi. Spēles funkcionalitāte ietver lokālu spēli, datora pretinieku. Spēles aprakstā ietilpst daudzspēlētāju režīma projektējums. Programmai ir grafiska lietotāja saskarne. Tā veidota python programmēšanas valodā, ar pyglet grafiskās bibliotēkas palīdzību. Darbs sevī ietver spēles dokumentāciju un pašu programmu.

SpēlePygletDatorzinātneKārtisZolePython
researchProduct

Corrigendum: ExGUtils: A Python Package for Statistical Analysis With the ex-Gaussian Probability Density

2018

significance testinglcsh:BF1-990ex-Gaussian fitProbability density functionPython (programming language)pythonEx gaussianlcsh:Psychologyresponse componentsSignificance testingStatistical analysisPsychologyAlgorithmcomputerresponse timesGeneral Psychologycomputer.programming_languageFrontiers in Psychology
researchProduct

Pacientu komentāru nolūka noteikšana izmantojot mašīnmācīšanos

2020

Bakalaura darba mērķis ir automatizēt procesu aptauju atvērtā tipa jautājumu nolūka noteikšanai, izmantojot uzraudzīto mašīnmācīšanos, kā arī pierādīt izvēlētā risinājuma veiktspēju. Programmatūras risinājums paredzēts pacientu komentāru nolūka noteikšanai. Bakalaura darbs sastāv no vārdnīcas, ievada, mašīnmācīšanās teorijas, eksistējošiem risinājumiem, mašīnmācīšanās bibliotēku analīzi, datu apstrādes, modeļa parametru izklāsta, modeļa izstrādes, rezultātiem, secinājumiem, izmantotās literatūras un pielikumiem. Bakalaura darbā aprakstītas mašīnmācīšanās bibliotēkas, ko iespējams izmantot risinājuma izstrādei. Ar konkrētu izvelētu mašīnmācīšanās bibliotēku aprakstīta mašīnmācīšanās modeļa i…

Uzraudzītā mācīšanāsDatorzinātneMašinmācīšanāsmašīnmācīšanās modelismašīnmācīšanās bibliotēkasPython
researchProduct

Interpretable machine learning models for single-cell ChIP-seq imputation

2019

AbstractMotivationSingle-cell ChIP-seq (scChIP-seq) analysis is challenging due to data sparsity. High degree of data sparsity in biological high-throughput single-cell data is generally handled with imputation methods that complete the data, but specific methods for scChIP-seq are lacking. We present SIMPA, a scChIP-seq data imputation method leveraging predictive information within bulk data from ENCODE to impute missing protein-DNA interacting regions of target histone marks or transcription factors.ResultsImputations using machine learning models trained for each single cell, each target, and each genomic region accurately preserve cell type clustering and improve pathway-related gene i…

Computer sciencebusiness.industryCell chipPython (programming language)Machine learningcomputer.software_genreENCODEIdentification (information)Simulated dataFeature (machine learning)Imputation (statistics)Artificial intelligenceCluster analysisbusinesscomputercomputer.programming_language
researchProduct

PyDSC: a simple tool to treat differential scanning calorimetry data

2020

AbstractHerein, we describe an open-source, Python-based, script to treat the output of differential scanning calorimetry (DSC) experiments, called pyDSC, available free of charge for download at https://github.com/leonardo-chiappisi/pyDSC under a GNU General Public License v3.0. The main aim of this program is to provide the community with a simple program to analyze raw DSC data. Key features include the correction from spurious signals, and, most importantly, the baseline is computed with a robust, physically consistent approach. We also show that the baseline correction routine implemented in the script is significantly more reproducible than different standard ones proposed by propriet…

Computer science030303 biophysicsDSC03 medical and health sciencesSoftwareDifferential scanning calorimetryprotein conformationPhysical and Theoretical ChemistrySpurious relationshipReliability (statistics)0303 health sciencesReproducibilityInstrument controlSIMPLE (military communications protocol)business.industry030302 biochemistry & molecular biologypolymer stabilityCondensed Matter PhysicsKey featuresbaseline correction540 Chemie und zugeordnete Wissenschaftenphase transitionddc:540businessAlgorithmPython
researchProduct

Challenges of automatic processing of large amount of skin lesion multispectral data

2020

This work will describe the challenges involved in setting up automatic processing for a large differentiated data set. In this study, a multispectral (skin diffuse reflection images using 526nm (green), 663nm (red), and 964nm (infrared) illumination and autofluorescence (AF) image using 405 nm excitation) data set with 756 lesions (3024 images) was processed. Previously, using MATLAB software, finding markers, correctly segmenting images with dark edges and image alignment were the main causes of the problems in automatic data processing. To improve automatic processing and eliminate the use of licensed software, the latter was substituted with the open source Python environment. For more …

Artificial neural networkbusiness.industryComputer scienceMultispectral imageComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPython (programming language)Image (mathematics)Data setSoftwareSegmentationComputer visionArtificial intelligenceMATLABbusinesscomputercomputer.programming_languageBiophotonics—Riga 2020
researchProduct

On Multiresolution Transforms Based on Weighted-Least Squares

2014

This work is devoted to construct Harten’s multiresolution transforms using Weighted-Least squares for different discretizations. We establish a relation between the filters obtained using some decimation operators. Some properties and examples of filters are presented.

Discrete-time signalWeight functionDecimationRelation (database)Applied mathematicsConstruct (python library)Mathematics
researchProduct

Papildu funkciju izstrāde mašīnmācīšanās teksta analizatoram

2019

Teksta analīzes veikšanai ir pieejamas vairākas metodes, šajā dokumentā ir apskatīts kā pielietot Correlation Explanation[7] (korelāciju skaidrošana, turpmāk CorEx[7]) teksta analīzes metodi, implementējot atvērtā pirmkoda (open-source) bibliotēku corextopic[3], jau izstrādātā sistēmā - mašīnmācīšanās teksta analizatorā (turpmāk MMTA). Darbā ir aprakstīta MMTA pamatdarbība un tā mijiedarbība ar implementēto corextopic[3] bibliotēku. MMTA ir programmprodukts ar implementētām vairākām bibliotēkām, kas dod iespēju programmprodukta lietotājam izvēlēties starp vairākām datu apstrādes metodēm saistībā ar teksta analīzi. MMTA darbība iedalās. Informācijas ekstrakcija un tēmu modelēšana ir divi MMT…

pythonCorExtēmu modelēšanaDatorzinātneteksta analīzemašīnmācīšanās
researchProduct

Implications of quantum automata for contextuality

2014

We construct zero error quantum finite automata (QFAs) for promise problems which cannot be solved by bounded error probabilistic finite automata (PFAs). Here is a summary of our results: There is a promise problem solvable by an exact two way QFA in exponential expected time but not by any bounded error sublogarithmic space probabilistic Turing machine (PTM). There is a promise problem solvable by an exact two way QFA in quadratic expected time but not by any bounded error o(loglogn) space PTMs in polynomial expected time. The same problem can be solvable by a one way Las Vegas (or exact two way) QFA with quantum head in linear (expected) time. There is a promise problem solvable by a Las …

Discrete mathematicsProbabilistic finite automataTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESQuantum automata0102 computer and information sciencesConstruct (python library)Nonlinear Sciences::Cellular Automata and Lattice Gases01 natural sciencesKochen–Specker theoremTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES010201 computation theory & mathematics0103 physical sciencesQuantum finite automataPromise problem010306 general physicsComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Predictive Model Markup Language (PMML) Representation of Bayesian Networks: An Application in Manufacturing

2018

International audience; Bayesian networks (BNs) represent a promising approach for the aggregation of multiple uncertainty sources in manufacturing networks and other engineering systems for the purposes of uncertainty quantification, risk analysis, and quality control. A standardized representation for BN models will aid in their communication and exchange across the web. This article presents an extension to the predictive model markup language (PMML) standard for the representation of a BN, which may consist of discrete variables, continuous variables, or their combination. The PMML standard is based on extensible markup language (XML) and used for the representation of analytical models…

0209 industrial biotechnologyDesignComputer sciencecomputer.internet_protocol02 engineering and technologycomputer.software_genreBayesian inferenceIndustrial and Manufacturing EngineeringArticle[SPI]Engineering Sciences [physics]020901 industrial engineering & automationPMML0202 electrical engineering electronic engineering information engineeringanalyticsUncertainty quantificationMonte-Carlouncertaintycomputer.programming_languageParsingBayesian networkInformationSystems_DATABASEMANAGEMENTstandardPython (programming language)XMLComputer Science ApplicationsmanufacturingComputingMethodologies_PATTERNRECOGNITIONBayesian networksControl and Systems EngineeringSurface-RoughnessData analysisPredictive Model Markup Language020201 artificial intelligence & image processingData miningcomputerXML
researchProduct