Search results for "Q-ball"

showing 2 items of 2 documents

Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

2017

We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. As a model system we consider O(N)-symmetric scalar field theories. We use classical-statistical real-time simulations, as well as a systematic 1/N expansion of the quantum (2PI) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions the …

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)axionsAnnihilationta114Field (physics)010308 nuclear & particles physicsFOS: Physical sciencesBose-Einstein condensatesCharge (physics)01 natural scienceslaw.inventionHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Q-balllawQuantum electrodynamics0103 physical sciences010306 general physicsScalar fieldQuantumEffective actionBose–Einstein condensateAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Searching for axion stars and $Q$-balls with a terrestrial magnetometer network

2018

Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudos…

Atomic Physics (physics.atom-ph)media_common.quotation_subjectScalar (mathematics)Dark matterFOS: Physical sciencesAstrophysicsParameter space01 natural sciencesPhysics - Atomic PhysicsQ-ballHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)media_commonPhysicsQuantum Physics010308 nuclear & particles physicsAstronomyUniversePseudoscalarStarsHigh Energy Physics - PhenomenologyAstrophysics - Instrumentation and Methods for AstrophysicsQuantum Physics (quant-ph)
researchProduct