6533b86cfe1ef96bd12c8a9a

RESEARCH PRODUCT

Searching for axion stars and $Q$-balls with a terrestrial magnetometer network

Arne WickenbrockSzymon PustelnyDmitry BudkerTheo ScholtesMaxim PospelovMaxim PospelovD. F. Jackson KimballJoshua EbyJoshua EbyYevgeny V. StadnikAntoine Weis

subject

Atomic Physics (physics.atom-ph)media_common.quotation_subjectScalar (mathematics)Dark matterFOS: Physical sciencesAstrophysicsParameter space01 natural sciencesPhysics - Atomic PhysicsQ-ballHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsAxionInstrumentation and Methods for Astrophysics (astro-ph.IM)media_commonPhysicsQuantum Physics010308 nuclear & particles physicsAstronomyUniversePseudoscalarStarsHigh Energy Physics - PhenomenologyAstrophysics - Instrumentation and Methods for AstrophysicsQuantum Physics (quant-ph)

description

Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.

http://doc.rero.ch/record/309106/files/wei_sas.pdf