0000000000242575
AUTHOR
Szymon Pustelny
Production and detection of atomic hexadecapole at Earth's magnetic field
Anisotropy of atomic states is characterized by population differences and coherences between Zeeman sublevels. It can be efficiently created and probed via resonant interactions with light, the technique which is at the heart of modern atomic clocks and magnetometers. Recently, nonlinear magneto-optical techniques have been developed for selective production and detection of higher polarization moments, hexadecapole and hexacontatetrapole, in the ground states of the alkali atoms. Extension of these techniques into the range of geomagnetic fields is important for practical applications. This is because hexadecapole polarization corresponding to the $\Delta M=4$ Zeeman coherence, with maxim…
Intensity interferometry for ultralight bosonic dark matter detection
Ultralight bosonic dark matter (UBDM) can be described by a classical wave-like field oscillating near the Compton frequency of the bosons. If a measurement scheme for the direct detection of UBDM interactions is sensitive to a signature quadratic in the field, then there is a near-zero-frequency (dc) component of the signal. Thus, a detector with a given finite bandwidth can be used to search for bosons with Compton frequencies many orders of magnitude larger than its bandwidth. This opens the possibility of a detection scheme analogous to Hanbury Brown and Twiss intensity interferometry. Assuming that the UBDM is virialized in the galactic gravitational potential, the random velocities pr…
Quantum sensor networks as exotic field telescopes for multi-messenger astronomy
Multi-messenger astronomy, the coordinated observation of different classes of signals originating from the same astrophysical event, provides a wealth of information about astrophysical processes with far-reaching implications. So far, the focus of multi-messenger astronomy has been the search for conventional signals from known fundamental forces and standard model particles, like gravitational waves (GW). In addition to these known effects, quantum sensor networks could be used to search for astrophysical signals predicted by beyond-standard-model (BSM) theories. Exotic bosonic fields are ubiquitous features of BSM theories and appear while seeking to understand the nature of dark matter…
Analysis method for detecting topological defect dark matter with a global magnetometer network
Abstract The Global Network of Optical Magnetometers for Exotic physics searches (GNOME) is a network of time-synchronized, geographically separated, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. GNOME is sensitive to exotic couplings of atomic spins to certain classes of dark matter candidates, such as axions. This work presents a data analysis procedure to search for axion dark matter in the form of topological defects: specifically, walls separating domains of discrete degenerate vacua in the axion field. An axion domain wall crossing the Earth creates a distinctive signal pattern in the network that can be d…
Characterization of the global network of optical magnetometers to search for exotic physics (GNOME)
The Global Network of Optical Magnetometers to search for Exotic physics (GNOME) is a network of geographically separated, time-synchronized, optically pumped atomic magnetometers that is being used to search for correlated transient signals heralding exotic physics. The GNOME is sensitive to nuclear- and electron-spin couplings to exotic fields from astrophysical sources such as compact dark-matter objects (for example, axion stars and domain walls). Properties of the GNOME sensors such as sensitivity, bandwidth, and noise characteristics are studied in the present work, and features of the network's operation (e.g., data acquisition, format, storage, and diagnostics) are described. Charac…
Nonlinear magneto-optical rotation in rubidium vapor excited with blue light
We present experimental and numerical studies of nonlinear magneto-optical rotation (NMOR) in rubidium vapor excited with resonant light tuned to the $5^2\!S_{1/2}\rightarrow 6^2\!P_{1/2}$ absorption line (421~nm). Contrary to the experiments performed to date on the strong $D_1$ or $D_2$ lines, in this case, the spontaneous decay of the excited state $6^2\!P_{1/2}$ may occur via multiple intermediate states, affecting the dynamics, magnitude and other characteristics of NMOR. Comparing the experimental results with the results of modelling based on Auzinsh et al., Phys. Rev. A 80, 1 (2009), we demonstrate that despite the complexity of the structure, NMOR can be adequately described with a…
Zero-field NMR of urea : spin-topology engineering by chemical exchange
Well-resolved and information-rich J-spectra are the foundation for chemical detection in zero-field NMR. However, even for relatively small molecules, spectra exhibit complexity, hindering the analysis. To address this problem, we investigate an example biomolecule with a complex J-coupling network─urea, a key metabolite in protein catabolism─and demonstrate ways of simplifying its zero-field spectra by modifying spin topology. This goal is achieved by controlling pH-dependent chemical exchange rates of 1H nuclei and varying the composition of the D2O/H2O mixture used as a solvent. Specifically, we demonstrate that by increasing the proton exchange rate in the [13C,15N2]-urea solution, the…
Production and detection of atomic hexadecapole at Earth’s magnetic field
We report a novel method that allows selective creation and detection of a macroscopic long lived hexadecapole polarization in the F = 2 ground state of 87Rb atoms at Earth's magnetic field (510 mG).
Dichroic atomic vapor laser lock with multi-gigahertz stabilization range
A dichroic atomic vapor laser lock (DAVLL) system exploiting buffer-gas-filled millimeter-scale vapor cells is presented. This system offers similar stability as achievable with conventional DAVLL system using bulk vapor cells, but has several important advantages. In addition to its compactness, it may provide continuous stabilization in a multi-gigahertz range around the optical transition. This range may be controlled either by changing the temperature of the vapor or by application of a buffer gas under an appropriate pressure. In particular, we experimentally demonstrate the ability of the system to lock the laser frequency between two hyperfine components of the $^{85}$Rb ground state…
13C and 15N NMR Detection of Metabolites via Relayed Hyperpolarization at 1 T and 1.4 T
Nuclear-spin hyperpolarization allows various magnetic-resonance applications in chemistry and medicine that are unattainable by standard methods. For such applications, parahydrogen-based hyperpolarization approaches are particularly attractive because of their technical simplicity, low cost, and ability to quickly (in seconds) produce large volumes of hyperpolarized material. Although many parahydrogen-based techniques have emerged, some of them remain unexplored due to the lack of careful optimization studies. In this work, we investigate and optimize a novel parahydrogen-induced polarization (PHIP) technique that relies on proton exchange referred to below as PHIP-relay. An INEPT (insen…
Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating
© 2017 Author(s). Vapor cells with antirelaxation coating are widely used in modern atomic physics experiments due to the coating's ability to maintain the atoms' spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures up to 95 °C. We infer that the spin-projection-noise-limited sensitivity for atomic magnetometers with such cells improves with temperature, which demonstrates the potential of antirelaxation coated cells in applications of future high-sensitivity magnetometers.
Efficient polarization of high-angular-momentum systems
We propose methods of optical pumping that are applicable to open, high-angular-momentum transitions in atoms and molecules, for which conventional optical pumping would lead to significant population loss. Instead of applying circularly polarized cw light, as in conventional optical pumping, we propose to use techniques for coherent population transfer (e.g., adiabatic fast passage) to arrange the atoms so as to increase the entropy removed from the system with each spontaneous decay from the upper state. This minimizes the number of spontaneous-emission events required to produce a stretched state, thus reducing the population loss due to decay to other states. To produce a stretched stat…
Investigation of antirelaxation wall coatings beyond melting temperatures
We investigate vapor cells with antirelaxation wall coatings by measuring their relaxation properties beyond the melting temperatures and compare with the melting behavior of the coating material as observed with differential scanning calorimetry.
Zero- to Ultralow-Field NMR Spectroscopy of Small Biomolecules.
Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical technique used to study chemicals and their transformations. However, high-field NMR spectroscopy necessitates advanced infrastructure, and even cryogen-free benchtop NMR spectrometers cannot be readily assembled from commercially available components. We demonstrate construction of a portable zero-field NMR spectrometer employing a commercially available magnetometer and investigate its applications in analytical chemistry. In particular, J-spectra of small representative biomolecules [13C]-formic acid, [1-13C]-glycine, [2,3-13C]-fumarate, and [1-13C]-d-glucose were acquired, and an approach relying on the prese…
System for control of polarization state of light and generation of light with continuously rotating linear polarization
We present a technique for generating light in an arbitrary polarization state. The technique is based on interference of two orthogonally polarized light beams, whose amplitudes and phases are controlled with a Mach-Zehnder inteferometer with acousto-optic modulators (AOMs) placed in each arm. We demonstrate that via control over amplitudes, phases, and frequencies of acoustic waves driving the AOMs, any polarization state can be synthesized. In particular, we demonstrate generation of linearly polarized light, whose polarization plane continuously rotates at a rate from 1 kHz to 1 MHz. Such light finds applications in science (e.g., investigations of Bloch-Siegert effect) and technology (…
Atomic physics studies at the gamma factory at CERN
The Gamma Factory initiative proposes to develop novel research tools at CERN by producing, accelerating and storing highly relativistic, partially stripped ion beams in the SPS and LHC storage rings. By exciting the electronic degrees of freedom of the stored ions with lasers, high-energy narrow-band photon beams will be produced by properly collimating the secondary radiation that is peaked in the direction of ions' propagation. Their intensities, up to $10^{17}$ photons per second, will be several orders of magnitude higher than those of the presently operating light sources in the particularly interesting $\gamma$--ray energy domain reaching up to 400 MeV. This article reviews opportuni…
Searching for axion stars and $Q$-balls with a terrestrial magnetometer network
Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudos…
Zero-field nuclear magnetic resonance spectroscopy of viscous liquids
Abstract We report zero-field NMR measurements of a viscous organic liquid, ethylene glycol. Zero-field spectra were taken showing resolved scalar spin–spin coupling (J-coupling) for ethylene glycol at different temperatures and water contents. Molecular dynamics strongly affects the resonance linewidth, which closely follows viscosity. Quantum chemical calculations have been used to obtain the relative stability and coupling constants of all ethylene glycol conformers. The results show the potential of zero-field NMR as a probe of molecular structure and dynamics in a wide range of environments, including viscous fluids.
Search for topological defect dark matter with a global network of optical magnetometers
Ultralight bosons such as axion-like particles are viable candidates for dark matter. They can form stable, macroscopic field configurations in the form of topological defects that could concentrate the dark matter density into many distinct, compact spatial regions that are small compared with the Galaxy but much larger than the Earth. Here we report the results of the search for transient signals from the domain walls of axion-like particles by using the global network of optical magnetometers for exotic (GNOME) physics searches. We search the data, consisting of correlated measurements from optical atomic magnetometers located in laboratories all over the world, for patterns of signals p…
Constraints on exotic spin-dependent interactions between electrons from helium fine-structure spectroscopy
Agreement between theoretical calculations of atomic structure and spectroscopic measurements is used to constrain possible contribution of exotic spin-dependent interactions between electrons to the energy differences between states in helium-4. In particular, constraints on dipole-dipole interactions associated with the exchange of pseudoscalar bosons (such as axions or axion-like particles) with masses ${10}^{\ensuremath{-}2}\ensuremath{\lesssim}m\ensuremath{\lesssim}{10}^{4}\mathrm{eV}$ are improved by a factor of $\ensuremath{\sim}100$. The first atomic-scale constraints on several exotic velocity-dependent dipole-dipole interactions are established as well.