Search results for "Q55"
showing 4 items of 34 documents
On a nonlinear Schrödinger equation for nucleons in one space dimension
2021
We study a 1D nonlinear Schrödinger equation appearing in the description of a particle inside an atomic nucleus. For various nonlinearities, the ground states are discussed and given in explicit form. Their stability is studied numerically via the time evolution of perturbed ground states. In the time evolution of general localized initial data, they are shown to appear in the long time behaviour of certain cases.
8-parameter solutions of fifth order to the Johnson equation
2019
We give different representations of the solutions of the Johnson equation with parameters. First, an expression in terms of Fredholm determinants is given; we give also a representation of the solutions written as a quotient of wronskians of order 2N. These solutions of order N depend on 2N − 1 parameters. When one of these parameters tends to zero, we obtain N order rational solutions expressed as a quotient of two polyno-mials of degree 2N (N +1) in x, t and 4N (N +1) in y depending on 2N −2 parameters. Here, we explicitly construct the expressions of the rational solutions of order 5 depending on 8 real parameters and we study the patterns of their modulus in the plane (x, y) and their …
From first to fourth order rational solutions to the Boussinesq equation
2020
Rational solutions to the Boussinesq equation are constructed as a quotient of two polynomials in x and t. For each positive integer N , the numerator is a polynomial of degree N (N + 1) − 2 in x and t, while the denominator is a polynomial of degree N (N + 1) in x and t. So we obtain a hierarchy of rational solutions depending on an integer N called the order of the solution. We construct explicit expressions of these rational solutions for N = 1 to 4.
First and second order rational solutions to the Johnson equation and rogue waves
2018
Rational solutions to the Johnson equation are constructed as a quotient of two polynomials in x, y and t depending on several real parameters. We obtain an infinite hierarchy of rational solutions written in terms of polynomials of degrees 2N (N + 1) in x, and t, 4N (N + 1) in y, depending on 2N − 2 real parameters for each positive integer N. We construct explicit expressions of the solutions in the cases N = 1 and N = 2 which are given in the following. We study the evolution of the solutions by constructing the patterns of their modulus in the (x, y) plane, and this for different values of parameters.