Search results for "Q55"

showing 4 items of 34 documents

On a nonlinear Schrödinger equation for nucleons in one space dimension

2021

We study a 1D nonlinear Schrödinger equation appearing in the description of a particle inside an atomic nucleus. For various nonlinearities, the ground states are discussed and given in explicit form. Their stability is studied numerically via the time evolution of perturbed ground states. In the time evolution of general localized initial data, they are shown to appear in the long time behaviour of certain cases.

numerical studySpace dimensionNonlinear Schrö010103 numerical & computational mathematicsNonlinear Schrödinger equations01 natural sciencesStability (probability)symbols.namesakeMathematics - Analysis of PDEs[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]dinger equationsNonlinear Schrödinger equationMathematicsMSC 35Q55 35C08 65M70Numerical AnalysisApplied Mathematics010102 general mathematicsTime evolutionground statesComputational MathematicsClassical mechanicsModeling and SimulationAtomic nucleussymbolsParticleNucleonAnalysis[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct

8-parameter solutions of fifth order to the Johnson equation

2019

We give different representations of the solutions of the Johnson equation with parameters. First, an expression in terms of Fredholm determinants is given; we give also a representation of the solutions written as a quotient of wronskians of order 2N. These solutions of order N depend on 2N − 1 parameters. When one of these parameters tends to zero, we obtain N order rational solutions expressed as a quotient of two polyno-mials of degree 2N (N +1) in x, t and 4N (N +1) in y depending on 2N −2 parameters. Here, we explicitly construct the expressions of the rational solutions of order 5 depending on 8 real parameters and we study the patterns of their modulus in the plane (x, y) and their …

rogue waves PACS numbers : 33Q55ratio- nal solutionswronskiansrational solutions[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Johnson equation4710A-[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K104735Fg4754BdFredholm determinants
researchProduct

From first to fourth order rational solutions to the Boussinesq equation

2020

Rational solutions to the Boussinesq equation are constructed as a quotient of two polynomials in x and t. For each positive integer N , the numerator is a polynomial of degree N (N + 1) − 2 in x and t, while the denominator is a polynomial of degree N (N + 1) in x and t. So we obtain a hierarchy of rational solutions depending on an integer N called the order of the solution. We construct explicit expressions of these rational solutions for N = 1 to 4.

rogue waves PACS numbers : 33Q55rational solutions[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]4710A-[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K104735Fg4754BdBoussinesq equation
researchProduct

First and second order rational solutions to the Johnson equation and rogue waves

2018

Rational solutions to the Johnson equation are constructed as a quotient of two polynomials in x, y and t depending on several real parameters. We obtain an infinite hierarchy of rational solutions written in terms of polynomials of degrees 2N (N + 1) in x, and t, 4N (N + 1) in y, depending on 2N − 2 real parameters for each positive integer N. We construct explicit expressions of the solutions in the cases N = 1 and N = 2 which are given in the following. We study the evolution of the solutions by constructing the patterns of their modulus in the (x, y) plane, and this for different values of parameters.

wronskiansJohnson equation4710A-[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]ratio-rogue wavesnal solutions37K10[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph][MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]33Q554735FgPACS numbers :4754BdFredholm determinants
researchProduct