Search results for "QB460-466"

showing 10 items of 123 documents

Prospects for discovering supersymmetric long-lived particles with MoEDAL

2020

We present a study on the possibility of searching for long-lived supersymmetric partners with the MoEDAL experiment at the LHC. MoEDAL is sensitive to highly ionising objects such as magnetic monopoles or massive (meta)stable electrically charged particles. We focus on prospects of directly detecting long-lived sleptons in a phenomenologically realistic model which involves an intermediate neutral long-lived particle in the decay chain. This scenario is not yet excluded by the current data from ATLAS or CMS, and is compatible with astrophysical constraints. Using Monte Carlo simulation, we compare the sensitivities of MoEDAL versus ATLAS in scenarios where MoEDAL could provide discovery re…

Astrophysics and AstronomyParticle physicsPhysics and Astronomy (miscellaneous)Regular Article - Experimental PhysicsPhysics::Instrumentation and DetectorsMagnetic monopoleFOS: Physical scienceslcsh:AstrophysicsElementary particle01 natural sciencesHigh Energy Physics - ExperimentParticle decayHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)lcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityInvariant mass010306 general physicsEngineering (miscellaneous)Particle Physics - Phenomenologyastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Large Hadron Colliderhep-ex010308 nuclear & particles physicsSuperpartnerhep-phSupersymmetryHigh Energy Physics - PhenomenologyMoEDAL experimentlcsh:QC770-798Astrophysics - High Energy Astrophysical PhenomenaParticle Physics - ExperimentEuropean Physical Journal
researchProduct

Magnetic fields in heavy ion collisions: flow and charge transport

2020

At the earliest times after a heavy-ion collision, the magnetic field created by the spectator nucleons will generate an extremely strong, albeit rapidly decreasing in time, magnetic field. The impact of this magnetic field may have detectable consequences, and is believed to drive anomalous transport effects like the Chiral Magnetic Effect (CME). We detail an exploratory study on the effects of a dynamical magnetic field on the hydrodynamic medium created in the collisions of two ultrarelativistic heavy-ions, using the framework of numerical ideal MagnetoHydroDynamics (MHD) with the ECHO-QGP code. In this study, we consider a magnetic field captured in a conducting medium, where the conduc…

Computer Science::Machine LearningParticle physicsPhysics and Astronomy (miscellaneous)Nuclear Theoryheavy ion collisionsFOS: Physical scienceslcsh:Astrophysicsmagnetic fieldshiukkasfysiikkamagneettikentätComputer Science::Digital Libraries01 natural sciencesElectric charge530Nuclear Theory (nucl-th)Statistics::Machine LearningHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:QB460-466ddc:530lcsh:Nuclear and particle physics. Atomic energy. RadioactivityNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentEngineering (miscellaneous)Nuclear ExperimentPhysicsCharge conservation010308 nuclear & particles physicsElliptic flowCharge (physics)FermionMagnetic fieldDipoleHigh Energy Physics - PhenomenologyQuantum electrodynamicsComputer Science::Mathematical Softwarelcsh:QC770-798MagnetohydrodynamicsThe European Physical Journal C
researchProduct

Spreading of Competing Information in a Network

2020

We propose a simple approach to investigate the spreading of news in a network. In more detail, we consider two different versions of a single type of information, one of which is close to the essence of the information (and we call it good news), and another of which is somehow modified from some biased agent of the system (fake news, in our language). Good and fake news move around some agents, getting the original information and returning their own version of it to other agents of the network. Our main interest is to deduce the dynamics for such spreading, and to analyze if and under which conditions good news wins against fake news. The methodology is based on the use of ladder fermion…

Computer scienceGeneral Physics and Astronomylcsh:Astrophysics01 natural sciencesArticle010305 fluids & plasmas37M05Simple (abstract algebra)0103 physical scienceslcsh:QB460-466operatorial modelsStatistical dispersionStatistical physics010306 general physicslcsh:ScienceSettore MAT/07 - Fisica Matematica(<i>H</i><i>ρ</i>)-induced dynamicsSingle type37N20lcsh:QC1-99947L90spreading of newslcsh:QFake news(H ρ)-induced dynamicslcsh:Physics(Hρ)-induced dynamicsEntropy
researchProduct

Relaxion Stars and their detection via Atomic Physics

2019

The cosmological relaxion can address the hierarchy problem, while its coherent oscillations can constitute dark matter in the present universe. We consider the possibility that the relaxion forms gravitationally bound objects that we denote as relaxion stars. The density of these stars would be higher than that of the local dark matter density, resulting in enhanced signals in table-top detectors, among others. Furthermore, we raise the possibility that these objects may be trapped by an external gravitational potential, such as that of the Earth or the Sun. This leads to formation of relaxion halos of even greater density. We discuss several interesting implications of relaxion halos, as …

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Atomic Physics (physics.atom-ph)media_common.quotation_subjectDark matterGeneral Physics and AstronomyFOS: Physical scienceslcsh:AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCompact star01 natural sciencesCosmologyPhysics - Atomic PhysicsGravitational potentialHigh Energy Physics - Phenomenology (hep-ph)lcsh:QB460-4660103 physical sciences010306 general physicsmedia_commonPhysics010308 nuclear & particles physicsHierarchy problemlcsh:QC1-999UniverseHigh Energy Physics - PhenomenologyStarsHaloAtomic physicslcsh:PhysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Removing krypton from xenon by cryogenic distillation to the ppq level

2017

The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the β-emitter 85Kr which is present in the xenon. For XENON1T a concentration of natural krypton in xenon natKr/Xe<200ppq (parts per quadrillion, 1ppq=10-15mol/mol) is required. In this work, the design, construction and test of a novel cryogenic distillation column using the common McCabe–Thiele approach is described. The system demonstrated a krypton reduction factor of 6.4 · 10 5 with thermodynamic stability a…

CryostatPhysics - Instrumentation and DetectorsXenonPhysics and Astronomy (miscellaneous)WIMPDark matterAnalytical chemistryFOS: Physical scienceschemistry.chemical_elementlcsh:AstrophysicsWeakly Interact Massive ParticleSciences de l'ingénieur01 natural sciences7. Clean energyXenonlcsh:QB460-4660103 physical sciencesDark Matterlcsh:Nuclear and particle physics. Atomic energy. RadioactivitySensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsComputer science information & general worksEngineering (miscellaneous)Liquid XenonComputingMilieux_MISCELLANEOUSPhysicsAir separationPhysique010308 nuclear & particles physicsDistillation ColumnKryptonKryptonOrder (ring theory)Instrumentation and Detectors (physics.ins-det)AstronomiechemistryDirect Searchddc:000lcsh:QC770-798TPCOrder of magnitude
researchProduct

Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature

2021

This work concerns the theoretical description of the quantum dynamics of molecular junctions with thermal fluctuations and probability losses. To this end, we propose a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments. Along the lines discussed in [A. Sergi et al., Symmetry 10 518 (2018)], we adopt the operator-valued Wigner formulation of quantum mechanics (wherein the density matrix depends on the points of the Wigner phase space associated to the system) and derive a non-linear equation of motion. Moreover, we introduce a model for a non-Hermitian quantum single-molecule junction (nHQSMJ). In this model the leads are mapped to a tunneling…

Density matrixQuantum dynamicsmolecular junction; non-Hermitian quantum mechanics; open quantum system dynamics; quantum thermodynamics; Quantum Physics; Quantum Physics; 80M99 81-08 81-10 81P99General Physics and AstronomyFOS: Physical scienceslcsh:Astrophysics02 engineering and technology01 natural sciencesArticle81-1003.67.PpQuantum stateQuantum mechanicslcsh:QB460-4660103 physical sciences80M9931.15.xglcsh:Science010306 general physicsQuantum thermodynamicsQuantumnon-Hermitian quantum mechanicsQuantum tunnelling05.30.-dPhysicsQuantum PhysicsOperator (physics)80M99 81-08 81-10 81P9981-08021001 nanoscience & nanotechnologyopen quantum system dynamicslcsh:QC1-99981P99Phase space05.60.Ggquantum thermodynamicslcsh:Q0210 nano-technologyQuantum Physics (quant-ph)molecular junctionlcsh:Physics02.60.Cb
researchProduct

Hard diffraction in photoproduction with Pythia 8

2019

We present a new framework for modeling hard diffractive events in photoproduction, implemented in the general purpose event generator Pythia 8. The model is an extension of the model for hard diffraction with dynamical gap survival in pp and ppbar collisions proposed in 2015, now also allowing for other beam types. It thus relies on several existing ideas: the Ingelman-Schlein approach, the framework for multiparton interactions and the recently developed framework for photoproduction in gamma p, gamma gamma, ep and $e^+e^-$ collisions. The model proposes an explanation for the observed factorization breaking in photoproduced diffractive dijet events at HERA, showing an overall good agreem…

DiffractionParticle physicsPhysics and Astronomy (miscellaneous)FOS: Physical scienceslcsh:Astrophysicshiukkasfysiikka01 natural sciencesGamma gammaHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Factorization0103 physical scienceslcsh:QB460-466photonslcsh:Nuclear and particle physics. Atomic energy. Radioactivityparticle physics010306 general physicsNuclear ExperimentEngineering (miscellaneous)Event generatorPhysicsLarge Hadron Colliderfotonit010308 nuclear & particles physicsHERAHigh Energy Physics - PhenomenologyGeneral purposelcsh:QC770-798High Energy Physics::ExperimentBeam (structure)
researchProduct

Erratum to: DYTurbo: fast predictions for Drell–Yan processes

2020

The European physical journal / C 80(5), 440 (2020). doi:10.1140/epjc/s10052-020-7972-0

Drell-Yan processPhysics and Astronomy (miscellaneous)density [parton]Hadrontransverse momentum [resummation]Drell-YanParton01 natural sciencescorrelation [spin]colliding beams [hadron]pair production [lepton]ResummationHadron collidersPhysicsQuantum chromodynamicsprecision measurementhigher-order: 2resummation: transverse momentum2 [higher-order]kinematicsfactorization [cross section]parton: densityParticle physicsspin: correlation530 Physicslepton: pair productionlcsh:Astrophysics10192 Physics Institute530Standard Model0103 physical scienceslcsh:QB460-466quantum chromodynamicslcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:5303101 Physics and Astronomy (miscellaneous)010306 general physicsEngineering (miscellaneous)Electroweak010308 nuclear & particles physicshadron: colliding beamsHigh Energy Physics::PhenomenologyOrder (ring theory)cross section: factorizationQCDPair productionlcsh:QC770-798High Energy Physics::Experiment2201 Engineering (miscellaneous)Lepton
researchProduct

DYTurbo: fast predictions for Drell–Yan processes

2019

The European physical journal / C 80(5), 251 (2020). doi:10.1140/epjc/s10052-020-7757-5

Drell-Yan processPhysics and Astronomy (miscellaneous)density [parton]transverse momentum [resummation]Drell-YanParton01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)correlation [spin]colliding beams [hadron]pair production [lepton]ResummationHadron collidersPhysicsQuantum chromodynamicsprecision measurementhigher-order: 2resummation: transverse momentumDrell–Yan processhep-ph2 [higher-order]High Energy Physics - Phenomenologykinematicsfactorization [cross section]parton: densityPhenomenology (particle physics)Particle physics530 Physicsspin: correlationlepton: pair productionFOS: Physical scienceslcsh:Astrophysics10192 Physics Institute530Standard Modellcsh:QB460-4660103 physical sciencesquantum chromodynamicsddc:530lcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)Particle Physics - PhenomenologyElectroweak010308 nuclear & particles physicshadron: colliding beamsHigh Energy Physics::Phenomenologycross section: factorizationQCDPair production[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]lcsh:QC770-798High Energy Physics::ExperimentLeptonThe European Physical Journal C
researchProduct

Network Entropy for the Sequence Analysis of Functional Connectivity Graphs of the Brain

2018

Dynamic representation of functional brain networks involved in the sequence analysis of functional connectivity graphs of the brain (FCGB) gains advances in uncovering evolved interaction mechanisms. However, most of the networks, even the event-related ones, are highly heterogeneous due to spurious interactions, which bring challenges to revealing the change patterns of interactive information in the complex dynamic process. In this paper, we propose a network entropy (NE) method to measure connectivity uncertainty of FCGB sequences to alleviate the spurious interaction problem in dynamic network analysis to realize associations with different events during a complex cognitive task. The p…

Dynamic network analysisComputer scienceGeneral Physics and Astronomylcsh:Astrophysicsentropiata3112Measure (mathematics)Articleevent-related analysis050105 experimental psychology03 medical and health sciences0302 clinical medicinelcsh:QB460-4660501 psychology and cognitive sciencesAdjacency matrixdriver fatiguelcsh:ScienceSpurious relationshipRepresentation (mathematics)Event (probability theory)ta113Sequencebrain networkverkkoteoria05 social sciencesnetwork entropy; connectivity; brain network; dynamic network analysis; event-related analysis; driver fatiguelcsh:QC1-999connectivityProbability distributionlcsh:Qdynamic network analysisaivotnetwork entropyAlgorithmlcsh:Physics030217 neurology & neurosurgeryEntropy; Volume 20; Issue 5; Pages: 311
researchProduct