Search results for "QC0350"

showing 5 items of 5 documents

Solid-state-biased coherent detection of ultra-broadband terahertz pulses

2017

Significant progress in nonlinear and ultrafast optics has recently opened new and exciting opportunities for terahertz (THz) science and technology, which require the development of reliable THz sources, detectors, and supporting devices. In this work, we demonstrate the first solid-state technique for the coherent detection of ultra-broadband THz pulses (0.1-10 THz), relying on the electric-field-induced second-harmonic generation in a thin layer of ultraviolet fused silica. The proposed CMOS-compatible devices, which can be realized with standard microfabrication techniques, allow us to perform ultra-broadband detection with a high dynamic range by employing probe laser powers and bias v…

coherent detectionTA1501Nonlinear opticTerahertzFar infrared or terahertzFour-wave mixingUltrafast opticDevicePhysics::OpticsUltrafast laserSolid state detectorSettore ING-INF/01 - ElettronicaQC0350Optica
researchProduct

On-chip generation of high-dimensional entangled quantum states and their coherent control

2017

Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science1. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics2, for increasing the sensitivity of quantum imaging schemes3, for improving the robustness and key rate of quantum communication protocols4, for enabling a richer variety of quantum simulations5, and for achieving more efficient and error-tolerant quantum computation6. Integrated photonics has recently become a leading platform for the co…

Quantum opticFiber optics communicationQuantum imaging01 natural sciencesSettore ING-INF/01 - Elettronica010309 opticsOpen quantum systemQC350Quantum mechanics0103 physical sciencesQuantum information010306 general physicsQuantum information scienceQCSingle photons and quantum effectQuantum computerPhysicsQuantum networkMultidisciplinaryTheoryofComputation_GENERALIntegrated opticSettore ING-INF/02 - Campi ElettromagneticiQuantum PhysicsQC0350Quantum technologyPhotonicsQuantum teleportation
researchProduct

Counter-propagating frequency mixing with Terahertz waves in diamond

2013

Frequency conversion by means of Kerr nonlinearity is one of the most common and exploited nonlinear optical processes in the UV, visible, IR, and mid-IR spectral regions. Here we show that wave mixing of an optical field and a terahertz wave can be achieved in diamond, resulting in the frequency conversion of the terahertz radiation either by sum- or difference-frequency generation. In the latter case, we show that this process is phase matched and most efficient in a counterpropagating geometry.

TA1501Materials scienceNonlinear optical proceTerahertz radiationDifference-frequency generationFOS: Physical sciencesTerahertz radiationPhysics::Opticsengineering.materialOptical fieldKerr nonlinearitySettore ING-INF/01 - Elettronica01 natural sciences010309 opticsNonlinear opticalFrequency conversionOpticsThz radiation0103 physical sciencesFrequency mixing010306 general physicsCounterpropagatingQCMixing (physics)business.industryFrequency mixingWave mixingDiamondSettore ING-INF/02 - Campi ElettromagneticiNONLINEAR-OPTICAL SUSCEPTIBILITY; 2ND-HARMONIC GENERATION; FIELD; RADIATION; GUIDESAtomic and Molecular Physics and OpticsQC0350Optical fieldSpectral regionengineeringbusinessOptics (physics.optics)Physics - Optics
researchProduct

Hyperspectral terahertz microscopy via nonlinear ghost imaging

2020

Ghost imaging, based on single-pixel detection and multiple pattern illumination, is a crucial investigative tool in difficult-to-access wavelength regions. In the terahertz domain, where high-resolution imagers are mostly unavailable, ghost imaging is an optimal approach to embed the temporal dimension, creating a “hyperspectral” imager. In this framework, high resolution is mostly out of reach. Hence, it is particularly critical to developing practical approaches for microscopy. Here we experimentally demonstrate time-resolved nonlinear ghost imaging, a technique based on near-field, optical-to-terahertz nonlinear conversion and detection of illumination patterns. We show how space–time c…

Physics - Instrumentation and DetectorsComputer scienceTerahertz radiationFOS: Physical sciences02 engineering and technologyGhost imaging01 natural sciences010309 opticssymbols.namesakeOptics0103 physical sciencesMicroscopyCouplingbusiness.industryQC0454.T47Hyperspectral imagingInstrumentation and Detectors (physics.ins-det)QC0446.2021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsQC0350Electronic Optical and Magnetic MaterialsNonlinear systemWavelengthFourier transformComputer Science::Computer Vision and Pattern Recognitionsymbols0210 nano-technologybusinessOptics (physics.optics)Physics - Optics
researchProduct

Practical system for the generation of pulsed quantum frequency combs

2017

The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon…

Quantum opticPhysics::Optics02 engineering and technologyPhotodetectionQuantum imagingIntegrated optics device01 natural sciencesSettore ING-INF/01 - Elettronica010309 opticsOpticsQuantum state0103 physical sciencesQuantum informationQCQuantum computerPhysicsQuantum opticsParametric oscillators and amplifierbusiness.industryQuantum sensorQSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsQC0350Quantum technologyNonlinear optics four-wave mixingOptoelectronicsMode-locked lasers.0210 nano-technologybusiness
researchProduct