Search results for "QUADRUPOLE"
showing 10 items of 460 documents
HfF+ as a candidate to search for the nuclear weak quadrupole moment
2018
Nuclei with a quadrupole deformation, such as $^{177}\mathrm{Hf}$ have enhanced weak quadrupole moment which induces the tensor weak electron-nucleus interaction in atoms and molecules. Corresponding parity-non-conserving (PNC) effect is strongly enhanced in the ${}^{3}{\mathrm{\ensuremath{\Delta}}}_{1}$ electronic state of the $^{177}\mathrm{HfF}^{+}$ cation which has very close opposite parity levels mixed by this tensor interaction. In the present paper we perform relativistic many-body calculations of this PNC effect. It is shown that the tensor weak interaction induced by the weak quadrupole moment gives the dominating contribution to the PNC effects in $^{177}\mathrm{HfF}^{+}$ which s…
The Ramsey method in high-precision mass spectrometry with Penning traps: Experimental results
2007
The highest precision in direct mass measurements is obtained with Penning trap mass spectrometry. Most experiments use the interconversion of the magnetron and cyclotron motional modes of the stored ion due to excitation by external radiofrequency-quadrupole fields. In this work a new excitation scheme, Ramsey's method of time-separated oscillatory fields, has been successfully tested. It has been shown to reduce significantly the uncertainty in the determination of the cyclotron frequency and thus of the ion mass of interest. The theoretical description of the ion motion excited with Ramsey's method in a Penning trap and subsequently the calculation of the resonance line shapes for differ…
Interacting induced dipoles polarization model for molecular polarizabilities. Reference molecules, amino acids and model peptides
1999
Abstract We outline a method for the calculation of molecular dipole ( μ ) and quadrupole ( Θ = ) moments and dipole–dipole polarizabilities ( α = ) which we have successfully applied to a series of reference molecules, amino acids and model peptides. The results for μ are in line with CPHF reference calculations. In particular, the calculated positive value of CO is in agreement with both experimental and CI calculations. The computation of ( α = ) has been performed by the interacting induced dipoles polarization model that calculates tensor effective anisotropic point polarizabilities (method of Applequist et al.). The POLAR program cannot be used as a black box. Some tests should be per…
Theory of simultaneous dipole and quadrupole excitation of the ion motion in a Penning trap
2012
Abstract Penning traps confine ions of atoms and molecules as well as other charged particles by a combination of static electric and magnetic fields to the central region of the trap, where these objects can be studied. Most experiments employ pulses of dipolar radio-frequency radiation followed by pulses of quadrupolar radio-frequency radiation to manipulate the motional state of the trapped particles. Instead of a sequential procedure an excitation of the ion motion by the simultaneous application of dipolar and quadrupolar rf-fields is also conceivable. This paper investigates the theory of simultaneous excitation under very general assumptions, with inclusion of possible damping terms.…
Preparation and structural studies on dibutyltin(IV) complexes with pyridine mono- and dicarboxylic acids
2004
Abstract A number of organotin(IV) complexes with pyridine mono- and dicarboxylic acids (containing ligating –COOH group(s) and aromatic {N} atoms) were prepared in the solid state. The bonding sites of the ligands were determined by means of FT-IR spectroscopic measurements. It was found that in most cases the –COO− groups form bridges between two central {Sn} atoms, thereby leading to polymeric (oligomeric) complexes. On this basis, the experimental 119Sn Mossbauer spectroscopic data were treated with partial quadrupole splitting approximations. The calculations predicted the existence of complexes with octahedral (oh) and trigonal-bipyramidal (tbp) structures, but the formation of comple…
Quadrupole excitation of stored ion motion at the true cyclotron frequency
1995
Abstract The motion of an ion in a Penning trap has been investigated in the presence of an azimuthal quadrupole radio frequency field and a damping force provided by buffer gas collisions. Analytical expressions are derived which describe the line shape of the cyclotron resonance as well as the properties of the mass-selective cooling mechanism for heavy ions. Excellent agreement is observed between theoretical results and experimental data obtained with the tandem Penning trap mass spectromer ISOLTRAP at ISOLDE (CERN).
Theory of quadrupole detection fourier transform-ion cyclotron resonance
1991
Abstract The theoretical basis of the recently introduced quadrupole detection Fourier transform-ion cyclotron resonance technique is developed by use of the concept of image charges induced in the detection electrodes. The appearance of resonances at frequencies 2ω+, 2ω−, (ω+ + ω−) and (ω+ − ω−) is explained. The new method is compared with the standard (dipole) detection scheme. Techniques are suggested allowing the simultaneous determination of all resonance frequencies ω+ (perturbed, or reduced, cyclotron frequency), ω− (magnetron frequency) and ωz (trapping frequency).
The elliptical Penning trap: Experimental investigations and simulations
2008
Abstract The application of an additional azimuthal quadrupolar electrostatic field to a Penning trap leads to a field configuration referred to as an elliptical Penning trap. The resulting changes of the radial ion motions have been investigated experimentally and by use of simulations. The eigenfrequencies, i.e., the magnetron frequency ω ˜ − and the reduced cyclotron frequency ω ˜ + , are found to be shifted with respect to those of the standard Penning trap ω − , ω + , respectively. As the shift of the magnetron frequency ω ˜ − is larger than that of the reduced cyclotron frequency ω ˜ + their sum ω ˜ + + ω ˜ − is also a function of the ellipticity and no longer equal to the cyclotron f…
Mass measurements of very high accuracy by time-of-flight ion cyclotron resonance of ions injected into a penning trap
1989
Abstract The possibility of absolute mass measurements using time-of-flight detection of ion cyclotron resonance on ions injected into a Penning trap has been demonstrated. Resolving powers of 2 million have been achieved, with accuracies of about 0.5 ppm. Absolute accuracy is obtained by direct observation of the sum frequency of the cyclotron and the magnetron motions through the use of an azimuthal quadrupole r.f. field to transform initial magnetron motion into cyclotron motion. Imperfections of the Penning trap leading to systematic errors are discussed. The system has been designed specifically to measure the masses of radionuclides produced at the on-line isotope separator ISOLDE. Wi…
Mössbauer spectroscopic studies on compounds containing tin-cadmium and tin-zinc bonds
1975
The Mossbauer parameters of compounds Ph3Sn MCl · TMED (M = Cd, Zn; TMED = N,N,N′,N′-tetramethylethylenediamine), (Ph3Sn)2CdL2 (L2 = TMED, 2,2′-bipyridine and o-phenanthroline) and (Ph3Sn)2 Zn · TMED have been determined and are discussed in connection with Mossbauer data concerning Ph3SnIV derivatives with other Sn-metal bonds. The isomer shift values suggest a high s character in SnCd and SnZn bonds resulting in deviations from regular tetrahedral environments around tin. Experimental quadrupole splittings and calculated partial quadrupole splitting values indicate reduced donor abilities towards the tin atom of an individual Ph3SnIV moiety by Cd-and Zn(Ph3Sn)1−nClnL2 (i.e., the remaini…