Search results for "QUANTITATIVE METHODS"
showing 10 items of 152 documents
A cogging torque minimization procedure for IPMSMs based on different laminate geometry
2016
This paper presents a possible minimization procedure of the cogging torque generated by an IPMSM (Interior Permanent Magnet Synchronous Machine) with a progressive modification of a basic geometrical structure of rotor laminates. More in detail, an IPMSM model is analyzed by using a Finite Element Method (FEM) approach. Then, other IPMSM models, which are obtained by modifying the geometry of the IPMSM rotor laminates and by maintaining the same stator configuration, are proposed and discussed. From the obtained simulation results, the cogging torque components for each structure are determined by means of FEM and compared to each other. From this comparison, it can be stated that the cogg…
Two Half-Truths Make a Whole? On Bias in Self-Reports and Tracking Data
2019
The pervasive use of mobile information technologies brings new patterns of media usage, but also challenges to the measurement of media exposure. Researchers wishing to, for example, understand the nature of selective exposure on algorithmically driven platforms need to precisely attribute individuals’ exposure to specific content. Prior research has used tracking data to show that survey-based self-reports of media exposure are critically unreliable. So far, however, little effort has been invested into assessing the specific biases of tracking methods themselves. Using data from a multimethod study, we show that tracking data from mobile devices is linked to systematic distortions in sel…
Experimental validation of a distribution theory based analysis of the effect of manufacturing tolerances on permanent magnet synchronous machines
2017
An experimental study on the effect of permanent magnet tolerances on the performances of a Tubular Linear Ferrite Motor is presented in this paper. The performances that have been investigated are: cogging force, end effect cogging force and generated thrust. It is demonstrated that: 1) the statistical variability of the magnets introduces harmonics in the spectrum of the cogging force; 2) the value of the end effect cogging force is directly linked to the values of then remanence field of the external magnets placed on the slider; 3) the generated thrust and its statistical distribution depend on the remanence field of the magnets placed on the translator.
Finding optimal finite biological sequences over finite alphabets: the OptiFin toolbox
2017
International audience; In this paper, we present a toolbox for a specific optimization problem that frequently arises in bioinformatics or genomics. In this specific optimisation problem, the state space is a set of words of specified length over a finite alphabet. To each word is associated a score. The overall objective is to find the words which have the lowest possible score. This type of general optimization problem is encountered in e.g 3D conformation optimisation for protein structure prediction, or largest core genes subset discovery based on best supported phylogenetic tree for a set of species. In order to solve this problem, we propose a toolbox that can be easily launched usin…
Selectivity in Probabilistic Causality: Drawing Arrows from Inputs to Stochastic Outputs
2011
Given a set of several inputs into a system (e.g., independent variables characterizing stimuli) and a set of several stochastically non-independent outputs (e.g., random variables describing different aspects of responses), how can one determine, for each of the outputs, which of the inputs it is influenced by? The problem has applications ranging from modeling pairwise comparisons to reconstructing mental processing architectures to conjoint testing. A necessary and sufficient condition for a given pattern of selective influences is provided by the Joint Distribution Criterion, according to which the problem of "what influences what" is equivalent to that of the existence of a joint distr…
Tandem repeats lead to sequence assembly errors and impose multi-level challenges for genome and protein databases
2019
AbstractThe widespread occurrence of repetitive stretches of DNA in genomes of organisms across the tree of life imposes fundamental challenges for sequencing, genome assembly, and automated annotation of genes and proteins. This multi-level problem can lead to errors in genome and protein databases that are often not recognized or acknowledged. As a consequence, end users working with sequences with repetitive regions are faced with ‘ready-to-use’ deposited data whose trustworthiness is difficult to determine, let alone to quantify. Here, we provide a review of the problems associated with tandem repeat sequences that originate from different stages during the sequencing-assembly-annotatio…
Gap Filling of Biophysical Parameter Time Series with Multi-Output Gaussian Processes
2018
In this work we evaluate multi-output (MO) Gaussian Process (GP) models based on the linear model of coregionalization (LMC) for estimation of biophysical parameter variables under a gap filling setup. In particular, we focus on LAI and fAPAR over rice areas. We show how this problem cannot be solved with standard single-output (SO) GP models, and how the proposed MO-GP models are able to successfully predict these variables even in high missing data regimes, by implicitly performing an across-domain information transfer.
Retrieval of aboveground crop nitrogen content with a hybrid machine learning method
2020
Abstract Hyperspectral acquisitions have proven to be the most informative Earth observation data source for the estimation of nitrogen (N) content, which is the main limiting nutrient for plant growth and thus agricultural production. In the past, empirical algorithms have been widely employed to retrieve information on this biochemical plant component from canopy reflectance. However, these approaches do not seek for a cause-effect relationship based on physical laws. Moreover, most studies solely relied on the correlation of chlorophyll content with nitrogen, and thus neglected the fact that most N is bound in proteins. Our study presents a hybrid retrieval method using a physically-base…
Human experts vs. machines in taxa recognition
2020
The step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets with the transfer learning paradigm and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hier…
Machinery Failure Approach and Spectral Analysis to study the Reaction Time Dynamics over Consecutive Visual Stimuli
2020
The reaction times of individuals over consecutive visual stimuli have been studied using spectral analysis and a failure machinery approach. The used tools include the fast Fourier transform and a spectral entropy analysis. The results indicate that the reaction times produced by the independently responding individuals to visual stimuli appear to be correlated. The spectral analysis and the entropy of the spectrum yield that there are features of similarity in the response times of each participant and among them. Furthermore, the analysis of the mistakes made by the participants during the reaction time experiments concluded that they follow a behavior which is consistent with the MTBF (…