Search results for "QUANTUM GAS"

showing 10 items of 654 documents

A large-energy-gap oxide topological insulator based on the superconductor BaBiO3

2013

Mixed-valent perovskite oxides based on BaBiO3 (BBO) are, like cuperates, well-known high-Tc superconductors. Recent ab inito calculations have assigned the high-Tc superconductivity to a correlation-enhanced electron--phonon coupling mechanism, stimulating the prediction and synthesis of new superconductor candidates among mixed-valent thallium perovskites. Existing superconductivity has meant that research has mainly focused on hole-doped compounds, leaving electron-doped compounds relatively unexplored. Here we demonstrate through ab inito calculations that BBO emerges as a topological insulator (TI) in the electron-doped region, where the spin-orbit coupling (SOC) effect is significant.…

Band gapTopological degeneracyAb initioOxideGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technology01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter::Materials Sciencechemistry.chemical_compoundCondensed Matter::Superconductivity0103 physical sciencesTopological orderPhysics::Chemical Physics010306 general physicsCondensed Matter::Quantum GasesPhysicsSuperconductivityCondensed Matter - Materials ScienceCondensed matter physicsCondensed Matter - SuperconductivityDopingMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologychemistryTopological insulatorCondensed Matter::Strongly Correlated Electrons0210 nano-technologyNature Physics
researchProduct

Driven Bose-Hubbard Model with a Parametrically Modulated Harmonic Trap

2016

We investigate a one-dimensional Bose–Hubbard model in a parametrically driven global harmonic trap. The delicate interplay of both the local interaction of the atoms in the lattice and the driving of the global trap allows us to control the dynamical stability of the trapped quantum many-body state. The impact of the atomic interaction on the dynamical stability of the driven quantum many-body state is revealed in the regime of weak interaction by analyzing a discretized Gross–Pitaevskii equation within a Gaussian variational ansatz, yielding a Mathieu equation for the condensate width. The parametric resonance condition is shown to be modified by the atom interaction strength. In particul…

Bose–Hubbard modelquantum many-body systemsFOS: Physical sciencesHarmonic (mathematics)02 engineering and technologyBose–Hubbard modelWeak interaction01 natural sciencessymbols.namesakeQuantum mechanics0103 physical sciencesAtomquantum gas010306 general physicsQuantumAnsatzPhysicsCondensed Matter::Quantum Gasesta114021001 nanoscience & nanotechnologyMathieu functionQuantum Gases (cond-mat.quant-gas)symbolsParametric oscillator0210 nano-technologyCondensed Matter - Quantum Gasesharmonic trap
researchProduct

Probing the bond order wave phase transitions of the ionic Hubbard model by superlattice modulation spectroscopy

2017

An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidences, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions …

BosonizationHubbard model[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]SuperlatticeGeneral Physics and AstronomyIonic bondingFOS: Physical sciences01 natural sciencesCondensed Matter - Strongly Correlated ElectronsPhysics and Astronomy (all)0103 physical sciencesBosonizationCold atoms010306 general physicsPhysicsCondensed Matter::Quantum GasesCondensed matter physicsDensity Matrix Renormalization GroupStrongly Correlated Electrons (cond-mat.str-el)010308 nuclear & particles physicsMott insulatorBerezinskii-Kosterlitz-Thouless transitionIsing transitionRenormalization groupBond orderQuantum Gases (cond-mat.quant-gas)Ising modelCondensed Matter::Strongly Correlated ElectronsCondensed Matter - Quantum Gases
researchProduct

Accessing finite momentum excitations of the one-dimensional Bose-Hubbard model using superlattice modulation spectroscopy

2018

We investigate the response to superlattice modulation of a bosonic quantum gas confined to arrays of tubes emulating the one-dimensional Bose-Hubbard model. We demonstrate, using both time-dependent density matrix renormalization group and linear response theory, that such a superlattice modulation gives access to the excitation spectrum of the Bose-Hubbard model at finite momenta. Deep in the Mott-insulator, the response is characterized by a narrow energy absorption peak at a frequency approximately corresponding to the onsite interaction strength between bosons. This spectroscopic technique thus allows for an accurate measurement of the effective value of the interaction strength. On th…

BosonizationPhysicsCondensed Matter::Quantum GasesCondensed matter physics[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Density matrix renormalization groupMott insulatorSuperlatticeFOS: Physical sciencesBose–Hubbard model01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasSuperfluidityBose-Hubbard modelQuantum Gases (cond-mat.quant-gas)Atomic and Molecular PhysicsDMRG0103 physical sciencesBosonizationand Optics010306 general physicsCondensed Matter - Quantum GasesFrequency modulationBoson
researchProduct

Correlation Dynamics During a Slow Interaction Quench in a One-Dimensional Bose Gas

2014

We investigate the response of a one-dimensional Bose gas to a slow increase of its interaction strength. We focus on the rich dynamics of equal-time single-particle correlations treating the Lieb-Liniger model within a bosonization approach and the Bose-Hubbard model using the time-dependent density-matrix renormalization group method. For short distances, correlations follow a power-law with distance with an exponent given by the adiabatic approximation. In contrast, for long distances, correlations decay algebraically with an exponent understood within the sudden quench approximation. This long distance regime is separated from an intermediate distance one by a generalized Lieb-Robinson …

BosonizationPhysicsCondensed Matter::Quantum GasesLieb-Robinson boundBose gas[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]General Physics and AstronomyFOS: Physical sciencesTomonaga-Luttinger LiquidRenormalization groupPower lawExponential functionAdiabatic theoremequal-time Green's functionsQuantum Gases (cond-mat.quant-gas)Light coneQuantum mechanicsinteraction quenchExponentCondensed Matter - Quantum GasesPACS: 67.85.−d 03.75.Kk 03.75.Lm 67.25.D−
researchProduct

Topological Devil's staircase in atomic two-leg ladders

2019

Abstract We show that a hierarchy of topological phases in one dimension—a topological Devil’s staircase—can emerge at fractional filling fractions in interacting systems, whose single-particle band structure describes a topological or a crystalline topological insulator. Focusing on a specific example in the BDI class, we present a field-theoretical argument based on bosonization that indicates how the system, as a function of the filling fraction, hosts a series of density waves. Subsequently, based on a numerical investigation of the low-lying energy spectrum, Wilczek–Zee phases, and entanglement spectra, we show that they are symmetry protected topological phases. In sharp contrast to t…

Bosonizationcold-atoms; fractional topological phase; strongly correlated; two-leg ladderGeneral Physics and AstronomyFOS: Physical sciencesQuantum entanglementcold-atomTopology01 natural sciencesSettore FIS/03 - Fisica della Materia010305 fluids & plasmasUltracold atom0103 physical sciencesddc:530Limit (mathematics)010306 general physicsElectronic band structurePhysicsstrongly correlatedSeries (mathematics)Symmetry (physics)cold-atomsQuantum Gases (cond-mat.quant-gas)Topological insulatorfractional topological phaseCondensed Matter - Quantum Gasestwo-leg ladder
researchProduct

Potential models for the simulation of methane adsorption on graphene: development and CCSD(T) benchmarks

2018

Different force fields for the graphene–CH4 system are proposed including pseudo-atom and full atomistic models. Furthermore, different charge schemes are tested to evaluate the electrostatic interaction for the CH4 dimer. The interaction parameters are optimized by fitting to interaction energies at the DFT level, which were themselves benchmarked against CCSD(T) calculations. The potentials obtained with both the pseudo-atom and full atomistic approaches describe accurately enough the average interaction in the methane dimer as well as in the graphene–methane system. Moreover, the atom–atom potentials also correctly provide the energies associated with different orientations of the molecu…

CCSD calculationsPotential modelsUNESCO::QUÍMICADimerGeneral Physics and AstronomyThermodynamics02 engineering and technology010402 general chemistry:QUÍMICA [UNESCO]7. Clean energy01 natural sciencesStability (probability)MethaneCCSD calculations Potential models methane adsorptionlaw.inventionchemistry.chemical_compoundlawPhysics::Atomic and Molecular ClustersMoleculePhysics::Chemical PhysicsPhysical and Theoretical ChemistryBond energymethane adsorptionCondensed Matter::Quantum GasesPhysicsGrapheneCharge (physics)Interaction energy021001 nanoscience & nanotechnology0104 chemical scienceschemistry0210 nano-technologyPhysical Chemistry Chemical Physics
researchProduct

Noise correlations of the ultracold Fermi gas in an optical lattice

2008

In this paper we study the density noise correlations of the two component Fermi gas in optical lattices. Three different type of phases, the BCS-state (Bardeen, Cooper, and Schieffer), the FFLO-state (Fulde, Ferrel, Larkin, and Ovchinnikov), and BP (breach pair) state, are considered. We show how these states differ in their noise correlations. The noise correlations are calculated not only at zero temperature, but also at non-zero temperatures paying particular attention to how much the finite temperature effects might complicate the detection of different phases. Since one-dimensional systems have been shown to be very promising candidates to observe FFLO states, we apply our results als…

ComputationFOS: Physical sciencesradiation pressure01 natural sciences010305 fluids & plasmaslaser coolingfermion systemsLattice (order)Laser coolingQuantum mechanicsCondensed Matter::Superconductivity0103 physical sciencesoptical lattices010306 general physicsPhysicsCondensed Matter::Quantum GasesOptical latticeCondensed matter physicsBCS theoryBCS theoryAtomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterRadiation pressureQuasiparticleFermi gasOther Condensed Matter (cond-mat.other)
researchProduct

Quantum phases in a resonantly-interacting Bose-Fermi mixture

2005

Condensed Matter::Quantum Gases
researchProduct

X-ray versus Ultraviolet Irradiation of Astrophysical Ice Analogs Leading to Formation of Complex Organic Molecules

2019

In astrochemistry, complex organic molecules (COMs) are defined as species with at least one C atom and six or more atoms in total. More than 70 COMs were detected toward various interstellar and c...

Condensed Matter::Quantum Gases0303 health sciencesAtmospheric ScienceAstrochemistryMaterials scienceX-rayPhotochemistryQuantitative Biology::Genomics01 natural sciencesOrganic molecules03 medical and health sciencesSpace and Planetary ScienceGeochemistry and Petrology0103 physical sciencesAtomPhysics::Atomic and Molecular ClustersUltraviolet irradiationPhysics::Atomic Physics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics030304 developmental biologyACS Earth and Space Chemistry
researchProduct