Search results for "QUANTUM MECHANICS"
showing 10 items of 2468 documents
Operational Quantification of Continuous-Variable Correlations
2007
We quantify correlations (quantum and/or classical) between two continuous variable modes in terms of how many correlated bits can be extracted by measuring the sign of two local quadratures. On Gaussian states, such `bit quadrature correlations' majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, ideal and real de-Gaussified photon-subtracted states, and mixtures of pure Gaussian states, the bit correlations are shown to be a {\em monotonic} function of the negativity. This yields a feasible, operational way to quantitatively measure non-Gaussian entanglement in current experiments by means of direct homodyne d…
Equations-of-motion approach to the spin-12Ising model on the Bethe lattice
2006
We exactly solve the ferromagnetic spin- 1/2 Ising model on the Bethe lattice in the presence of an external magnetic field by means of the equations of motion method within the Green's function formalism. In particular, such an approach is applied to an isomorphic model of localized Fermi particles interacting via an intersite Coulomb interaction. A complete set of eigenoperators is found together with the corresponding eigenvalues. The Green's functions and the correlation functions are written in terms of a finite set of parameters to be self-consistently determined. A procedure is developed that allows us to exactly fix the unknown parameters in the case of a Bethe lattice with any coor…
Uncertainty on w from large-scale structure
2012
We find that if we live at the center of an inhomogeneity with total density contrast of roughly 0.1, dark energy is not a cosmological constant at 95% confidence level. Observational constraints on the equation of state of dark energy, w, depend strongly on the local matter density around the observer. We model the local inhomogeneity with an exact spherically symmetric solution which features a pressureless matter component and a dark-energy fluid with constant equation of state and negligible sound speed, that reaches a homogeneous solution at finite radius. We fit this model to observations of the local expansion rate, distant supernovae and the cosmic microwave background. We conclude …
Spin qubits with electrically gated polyoxometalate molecules
2007
Spin qubits offer one of the most promising routes to the implementation of quantum computers. Very recent results in semiconductor quantum dots show that electrically-controlled gating schemes are particularly well-suited for the realization of a universal set of quantum logical gates. Scalability to a larger number of qubits, however, remains an issue for such semiconductor quantum dots. In contrast, a chemical bottom-up approach allows one to produce identical units in which localized spins represent the qubits. Molecular magnetism has produced a wide range of systems with tailored properties, but molecules permitting electrical gating have been lacking. Here we propose to use the polyox…
Hybrid Quantum Mechanics/Molecular Mechanics Simulations with Two-Dimensional Interpolated Corrections: Application to Enzymatic Processes
2006
Hybrid quantum mechanics/molecular mechanics (QM/MM) techniques are widely used to study chemical reactions in large systems. Because of the computational cost associated with the high dimensionality of these systems, the quantum description is usually restricted to low-level methods, such as semiempirical Hamiltonians. In some cases, the description obtained at this computational level is quite poor and corrections must be considered. We here propose a simple but efficient way to include higher-level corrections to be used in potential energy surface explorations and in the calculation of potentials of mean force. We evaluate a correction energy term as the difference between a high-level …
Cutoff solitons and bistability of the discrete inductance-capacitance electrical line: Theory and experiments
2007
A discrete nonlinear system driven at one end by a periodic excitation of frequency above the upper band edge (the discreteness induced cutoff) is shown to be a means to (1) generate propagating breather excitations in a long chain and (2) reveal the bistable property of a short chain. After detailed numerical verifications, the bistability prediction is demonstrated experimentally on an electrical transmission line made of 18 inductance-capacitance $(LC)$ cells. The numerical simulations of the $LC$-line model allow us also to verify the breather generation prediction with a striking accuracy.
Entanglement dynamics in superconducting qubits affected by local bistable impurities
2012
We study the entanglement dynamics for two independent superconducting qubits each affected by a bistable impurity generating random telegraph noise (RTN) at pure dephasing. The relevant parameter is the ratio $g$ between qubit-RTN coupling strength and RTN switching rate, that captures the physics of the crossover between Markovian and non-Markovian features of the dynamics. For identical qubit-RTN subsystems, a threshold value $g_\mathrm{th}$ of the crossover parameter separates exponential decay and onset of revivals; different qualitative behaviors also show up by changing the initial conditions of the RTN. We moreover show that, for different qubit-RTN subsystems, when both qubits are …
Hysteretic nonequilibrium Ising-Bloch transition
2005
We show that a parametrically driven cubic-quintic complex Ginzburg-Landau equation exhibits a hysteretic nonequilibrium Ising-Bloch transition for large enough quintic nonlinearity. These results help to understand the recent experimental observation of this pheomenon [A. Esteban-Martin et al., Phys. Rev. Lett. 94, 223903 (2005)].
Alternative single-reference coupled cluster approaches for multireference problems: the simpler, the better.
2011
We report a general implementation of alternative formulations of single-reference coupled cluster theory (extended, unitary, and variational) with arbitrary-order truncation of the cluster operator. These methods are applied to compute the energy of Ne and the equilibrium properties of HF and C(2). Potential energy curves for the dissociation of HF and the BeH(2) model computed with the extended, variational, and unitary coupled cluster approaches are compared to those obtained from the multireference coupled cluster approach of Mukherjee et al. [J. Chem. Phys. 110, 6171 (1999)] and the internally contracted multireference coupled cluster approach [F. A. Evangelista and J. Gauss, J. Chem. …
Many-body Green's function theory of electrons and nuclei beyond the Born-Oppenheimer approximation
2020
The method of many-body Green's functions is developed for arbitrary systems of electrons and nuclei starting from the full (beyond Born-Oppenheimer) Hamiltonian of Coulomb interactions and kinetic energies. The theory presented here resolves the problems arising from the translational and rotational invariance of this Hamiltonian that afflict the existing many-body Green's function theories. We derive a coupled set of exact equations for the electronic and nuclear Green's functions and provide a systematic way to approximately compute the properties of arbitrary many-body systems of electrons and nuclei beyond the Born-Oppenheimer approximation. The case of crystalline solids is discussed …