6533b82dfe1ef96bd1291fc5
RESEARCH PRODUCT
Spin qubits with electrically gated polyoxometalate molecules
Eugenio CoronadoAlejandro Gaita-ariñoAlejandro Gaita-ariñoJoerg LehmannDaniel Losssubject
Biomedical EngineeringFOS: Physical sciencesBioengineeringComputers MolecularComputer Science::Emerging TechnologiesQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)NanotechnologyComputer SimulationGeneral Materials ScienceElectrical and Electronic EngineeringQuantumQuantum computerSpin-½PhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsSpinsElectric ConductivityMaterials Science (cond-mat.mtrl-sci)Signal Processing Computer-AssistedSpin engineeringEquipment DesignTungsten CompoundsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsModels ChemicalSemiconductorsQubitComputer-Aided DesignQuantum TheoryLoss–DiVincenzo quantum computerSuperconducting quantum computingdescription
Spin qubits offer one of the most promising routes to the implementation of quantum computers. Very recent results in semiconductor quantum dots show that electrically-controlled gating schemes are particularly well-suited for the realization of a universal set of quantum logical gates. Scalability to a larger number of qubits, however, remains an issue for such semiconductor quantum dots. In contrast, a chemical bottom-up approach allows one to produce identical units in which localized spins represent the qubits. Molecular magnetism has produced a wide range of systems with tailored properties, but molecules permitting electrical gating have been lacking. Here we propose to use the polyoxometalate [PMo12O40(VO)2]q-, where two localized spins-1/2 can be coupled through the electrons of the central core. Via electrical manipulation of the molecular redox potential, the charge of the core can be changed. With this setup, two-qubit gates and qubit readout can be implemented.
year | journal | country | edition | language |
---|---|---|---|---|
2007-03-19 |