Search results for "QUBIT"

showing 10 items of 279 documents

Chromium(iii)-based potential molecular quantum bits with long coherence times

2019

Molecular quantum bits based on copper(ii) or vanadium(iv) have been shown to possess long coherence times on multiple occasions. In contrast, studies in which non-spin-½ ions are employed are relatively scarce. High-spin ions provide additional states that can be used to encode further quantum bits. Furthermore, an optical rather than a microwave readout of molecular quantum bits is highly desirable, because in principle it could allow addressing at the single quantum bit level. The chromium(iii) complex [Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine) combines both the large spin (S = 3/2) and optical activity (strong, long lived luminescence). Here we demons…

PhysicsGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesIonChromiumchemistryQuantum stateQubitPhysical and Theoretical ChemistryAtomic physics0210 nano-technologyLuminescenceQuantumMicrowaveCoherence (physics)Physical Chemistry Chemical Physics
researchProduct

Frozen Quantum Coherence

2015

We analyse under which dynamical conditions the coherence of an open quantum system is totally unaffected by noise. For a single qubit, specific measures of coherence are found to freeze under different conditions, with no general agreement between them. Conversely, for an N-qubit system with even N, we identify universal conditions in terms of initial states and local incoherent channels such that all bona fide distance-based coherence monotones are left invariant during the entire evolution. This finding also provides an insightful physical interpretation for the freezing phenomenon of quantum correlations beyond entanglement. We further obtain analytical results for distance-based measur…

PhysicsHigh Energy Physics - TheoryQuantum discordQuantum PhysicsQuantum decoherenceStatistical Mechanics (cond-mat.stat-mech)General Physics and AstronomyFOS: Physical sciencesDegree of coherenceQuantum entanglementMathematical Physics (math-ph)Invariant (physics)Open quantum systemHigh Energy Physics - Theory (hep-th)QubitQuantum mechanicsQuantum Physics (quant-ph)QuantumCondensed Matter - Statistical MechanicsMathematical PhysicsOptics (physics.optics)Physics - Optics
researchProduct

Dissipative effects on a generation scheme of a W state in an array of coupled Josephson junctions

2011

The dynamics of an open quantum system, consisting of three superconducting qubits interacting with independent reservoirs, is investigated to elucidate the effects of the environment on a unitary generation scheme of W states (Migliore R et al 2006 Phys. Rev. B 74 104503). To this end a microscopic master equation is constructed and its exact resolution predicts the generation of a Werner-like state instead of the W state. A comparison between our model and a more intuitive phenomenological model is also considered, in order to find the limits of the latter approach in the case of structured reservoirs.

PhysicsJosephson effectOpen quantum systemQuantum mechanicsQubitPhenomenological modelMaster equationDissipative systemW stateCondensed Matter PhysicsUnitary stateAtomic and Molecular Physics and Optics
researchProduct

GENERATION OF ENTANGLED STATES OF TWO DISTANT CAVITY MODES VIA JOSEPHSON JUNCTION BASED DEVICES

2007

We present a simple scheme for the preparation of entangled states of the e.m. modes of two spatially separated microwave cavities exploiting their interaction with two superconducting SQUID rings embedded within them. The scheme requires that the two SQUID qubits are initially prepared in an entangled state and the possibility of controlling both the coupling strengths and the interaction times. We also briefly discuss the importance of such a theoretical scheme in view of possible applications in the context of quantum computing and its experimental feasibility.

PhysicsJosephson effectPhysics and Astronomy (miscellaneous)Context (language use)Quantum entanglementJosephson junction-based devicequantum computinglaw.inventionSQUIDlawQuantum mechanicsQubitSuperconducting tunnel junctionW stateentanglementQuantum computerInternational Journal of Quantum Information
researchProduct

Decoherence in circuits of small Josephson junctions

2001

We discuss dephasing by the dissipative electromagnetic environment and by measurement in circuits consisting of small Josephson junctions. We present quantitative estimates and determine in which case the circuit might qualify as a quantum bit. Specifically, we analyse a three junction Cooper pair pump and propose a measurement to determine the decoherence time $\tau_\phi$.

PhysicsJosephson effectQuantum decoherenceCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsDephasingCondensed Matter - SuperconductivityFOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSuperconductivity (cond-mat.supr-con)Pi Josephson junctionQubitQuantum mechanicsCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Superconducting tunnel junctionCooper pairQuantum computer
researchProduct

Theoretical evaluation of lanthanide binding tags as biomolecular handles for the organization of single ion magnets and spin qubits

2015

Lanthanoid complexes are amongst the most promising compounds both in single ion magnetism and as molecular spin qubits, but their organization remains an open problem. We propose to combine Lanthanide Binding Tags (LBTs) with recombinant proteins as a path for an extremely specific and spatially-resolved organisation of lanthanoid ions as spin qubits. We develop a new computational subroutine for the freely available code SIMPRE that allows an inexpensive estimate of quantum decoherence times and qubit–qubit interaction strengths. We use this subroutine to evaluate our proposal theoretically for 63 different systems. We evaluate their behavior as single ion magnets and estimate both decohe…

PhysicsLanthanideQuantum decoherenceMagnetismUNESCO::QUÍMICASpin engineering02 engineering and technologyQuantum Physics010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences:QUÍMICA [UNESCO]0104 chemical sciencesIonInorganic ChemistryChemical physicsQubitQuantum mechanics0210 nano-technologySpin (physics)Magnetic dipole–dipole interaction
researchProduct

Hidden entanglement in the presence of random telegraph dephasing noise

2012

Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical since entanglement is by definition a nonlocal resource. We show that a simple explanation of this phenomenon may be provided by using the (recently introduced) concept of "hidden" entanglement, which signals the presence of entanglement that may be recovered with the only help of local operations.

PhysicsLocal OperationsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)DephasingFOS: Physical sciencesQuantum entanglementQuantum PhysicsCondensed Matter PhysicsNoise (electronics)Settore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsAction (physics)EntanglementOpen quantum systemQuantum mechanicsQubitQuantum Physics (quant-ph)Condensed Matter - Statistical MechanicsMathematical Physics
researchProduct

Quantum algorithm for simulating an experiment: Light interference from single ions and their mirror images

2019

We widen the range of applications for quantum computing by introducing digital quantum simulation methods for coherent light-matter interactions: We simulate an experiment where the emitted light from a single ion was interfering with its mirror image [Eschner et al., Nature (London) 413, 495 (2001)]. Using the quantum simulation software q1tsim, we accurately reproduce the interference pattern which had been observed experimentally and also show the effect of the mirror position on the spontaneous-emission rate of the ion. In order to minimize the number of required qubits, we implement a qubit-reinitialization technique. We show that a digital quantum simulation of complex experiments in…

PhysicsMirror imagebusiness.industryQuantum simulator01 natural sciences010305 fluids & plasmasIonComputational physicsSoftwarePosition (vector)Qubit0103 physical sciencesQuantum algorithm010306 general physicsbusinessQuantum computerPhysical Review A
researchProduct

Dynamics of spatially indistinguishable particles and quantum entanglement protection

2020

We provide a general framework which allows one to obtain the dynamics of $N$ noninteracting spatially indistinguishable particles locally coupled to separated environments. The approach is universal, being valid for both bosons and fermions and for any type of system-environment interaction. It is then applied to study the dynamics of two identical qubits under paradigmatic Markovian noises, such as phase damping, depolarizing and amplitude damping. We find that spatial indistinguishability of identical qubits is a controllable intrinsic property of the system which protects quantum entanglement against detrimental noise.

PhysicsOpen Quantum SystemQuantum PhysicsQuantum networkFOS: Physical sciencesFermionQuantum entanglement01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmasQuantum entanglementQubitQuantum mechanics0103 physical sciencesIdentical particleQuantum Physics (quant-ph)010306 general physicsQuantumQuantum indistinguishabilityIdentical particlesBosonPhysical Review A
researchProduct

Unambiguous phase retrieval in fiber-based interferometers

2020

A scheme for fiber interferometers, exploiting frequency-multiplexing in orthogonal fiber polarization modes, enables unambiguous phase retrieval. This allows for arbitrary phase tuning, providing a precise tool for time-bin qubit manipulation.

PhysicsOpticsFiber interferometers Frequency-multiplexing Phase retrieval Qubitbusiness.industryAstronomical interferometerSettore ING-INF/02 - Campi ElettromagneticiFiberbusinessPhase retrieval
researchProduct