Search results for "QUBIT"
showing 10 items of 279 documents
Quantum synchronization as a local signature of super- and subradiance
2017
We study the relationship between the collective phenomena of super- and subradiance and spontaneous synchronization of quantum systems. To this aim we revisit the case of two detuned qubits interacting through a pure dissipative bosonic environment, which contains the minimal ingredients for our analysis. By using the Liouville formalism, we are able to find analytically the ultimate connection between these phenomena. We find that dynamical synchronization is due to the presence of longstanding coherence between the ground state of the system and the subradiant state. We finally show that, under pure dissipation, the emergence of spontaneous synchronization and of subradiant emission occu…
Microwave potentials and optimal control for robust quantum gates on an atom chip
2006
We propose a two-qubit collisional phase gate that can be implemented with available atom chip technology, and present a detailed theoretical analysis of its performance. The gate is based on earlier phase gate schemes, but uses a qubit state pair with an experimentally demonstrated, very long coherence lifetime. Microwave near-fields play a key role in our implementation as a means to realize the state-dependent potentials required for conditional dynamics. Quantum control algorithms are used to optimize gate performance. We employ circuit configurations that can be built with current fabrication processes, and extensively discuss the impact of technical noise and imperfections that charac…
Temperature effects on quantum non-Markovianity via collision models
2018
Quantum non-Markovianity represents memory during the system dynamics, which is typically weakened by the temperature. We here study the effects of environmental temperature on the non-Markovianity of an open quantum system by virtue of collision models. The environment is simulated by a chain of ancillary qubits that are prepared in thermal states with a finite temperature $T$. Two distinct non-Markovian mechanisms are considered via two types of collision models, one where the system $S$ consecutively interacts with the ancillas and a second where $S$ collides only with an intermediate system $S'$ which in turn interacts with the ancillas. We show that in both models the relation between …
Experimental and theoretical challenges for the trapped electron quantum computer
2009
We discuss quantum information processing with trapped electrons. After recalling the operation principle of planar Penning traps we sketch the experimental conditions to load, cool and detect single electrons. Here we present a detailed investigation of a scalable scheme including feasibility studies and the analysis of all important elements, relevant for the experimental stage. On the theoretical side, we discuss different methods to couple electron qubits. We estimate the relevant qubit coherence times and draw implications for the experimental setting. A critical assessment of quantum information processing with trapped electrons is concluding the article.
Entanglement amplification in the nonperturbative dynamics of modular quantum systems
2013
We analyze the conditions for entanglement amplification between distant and not directly interacting quantum objects by their common coupling to media with static modular structure and subject to a local (single-bond) quenched dynamics. We show that in the non-perturbative regime of the dynamics the initial end-to-end entanglement is strongly amplified and, moreover, can be distributed efficiently between distant objects. Due to its intrinsic local and non-perturbative nature the dynamics is fast and robust against thermal fluctuations, and its control is undemanding. We show that the origin of entanglement amplification lies in the interference of the ground state and at most one of the l…
Quantum error correction and detection: Quantitative analysis of a coherent-state amplitude-damping code
2013
We re-examine a non-Gaussian quantum error correction code designed to protect optical coherent-state qubits against errors due to an amplitude damping channel. We improve on a previous result [Phys. Rev. A 81, 062344 (2010)] by providing a tighter upper bound on the performance attained when considering realistic assumptions which constrain the operation of the gates employed in the scheme. The quantitative characterization is performed through measures of fidelity and concurrence, the latter obtained by employing the code as an entanglement distillation protocol. We find that, when running the code in fully-deterministic error correction mode, direct transmission can only be beaten for ce…
Resonant effects in a SQUID qubit subjected to nonadiabatic changes
2013
By quickly modifying the shape of the effective potential of a double SQUID flux qubit from a single-well to a double-well condition, we experimentally observe an anomalous behavior, namely an alternance of resonance peaks, in the probability to find the qubit in a given flux state. The occurrence of Landau-Zener transitions as well as resonant tunneling between degenerate levels in the two wells may be invoked to partially justify the experimental results. A quantum simulation of the time evolution of the system indeed suggests that the observed anomalous behavior can be imputable to quantum coherence effects. The interplay among all these mechanisms has a practical implication for quantum…
Classes of Exactly Solvable Generalized Semi-Classical Rabi Systems
2018
The exact quantum dynamics of a single spin-1/2 in a generic time-dependent classical magnetic field is investigated and compared with the quantum motion of a spin-1/2 studied by Rabi and Schwinger. The possibility of regarding the scenario studied in this paper as a generalization of that considered by Rabi and Schwinger is discussed and a notion of time-dependent resonance condition is introduced and carefully legitimated and analysed. Several examples help to disclose analogies and departures of the quantum motion induced in a generalized Rabi system with respect to that exhibited by the spin-1/2 in a magnetic field precessing around the $z$-axis. We find that, under generalized resonanc…
Quantum Computation with Generalized Binomial States in Cavity Quantum Electrodynamics
2008
We study universal quantum computation in the cavity quantum electrodynamics (CQED) framework exploiting two orthonormal two-photon generalized binomial states as qubit and dispersive interactions of Rydberg atoms with high-$Q$ cavities. We show that an arbitrary qubit state may be generated and that controlled-NOT and 1-qubit rotation gates can be realized via standard atom-cavity interactions.
Emulating the one-dimensional Fermi-Hubbard model by a double chain of qubits
2016
The Jordan-Wigner transformation maps a one-dimensional spin-1/2 system onto a fermionic model without spin degree of freedom. A double chain of quantum bits with XX and ZZ couplings of neighboring qubits along and between the chains, respectively, can be mapped on a spin-full 1D Fermi-Hubbard model. The qubit system can thus be used to emulate the quantum properties of this model. We analyze physical implementations of such analog quantum simulators, including one based on transmon qubits, where the ZZ interaction arises due to an inductive coupling and the XX interaction due to a capacitive interaction. We propose protocols to gain confidence in the results of the simulation through measu…