Search results for "Quantum Decoherence"

showing 10 items of 159 documents

State Preparation and Tomography of a Nanomechanical Resonator with Fast Light Pulses

2018

Pulsed optomechanical measurements enable squeezing, non-classical state creation and backaction-free sensing. We demonstrate pulsed measurement of a cryogenic nanomechanical resonator with record precision close to the quantum regime. We use these to prepare thermally squeezed and purified conditional mechanical states, and to perform full state tomography. These demonstrations exploit large photon-phonon coupling in a nanophotonic cavity to reach a single-pulse imprecision of 9 times the mechanical zero-point amplitude $x_\mathrm{zpf}$. We study the effect of other mechanical modes which limit the conditional state width to 58 $x_\mathrm{zpf}$, and show how decoherence causes the state to…

Quantum decoherenceNanophotonicsGeneral Physics and AstronomyFOS: Physical sciencesPhysics::Opticsnanotekniikka01 natural sciences0103 physical sciences010306 general physicskvanttifysiikkaQuantumPhysicsCouplingQuantum Physicsquantum measurementsbusiness.industryState (functional analysis)optomechanicsNanomechanical resonatorAmplitudefotoniikkaphotonic crystalsOptoelectronicsnanophotonicsTomographybusinessQuantum Physics (quant-ph)Optics (physics.optics)Physics - Optics
researchProduct

Effects of an environment on a cavity-quantum-electrodynamics system controlled by bichromatic adiabatic passage

2012

International audience; We present a theoretical investigation of a cavity-QED system controlled by bichromatic adiabatic passage in a dissipative environment. We analyze the production of a controlled Fock state in the cavity by a traveling atom simultaneously coupled by a laser field, and the leakage of the corresponding photons from the cavity.

Quantum decoherencePhotonPhysics::Optics01 natural scienceslaw.invention010309 opticsPHOTON NUMBER STATESFock statelaw0103 physical sciencesPhysics::Atomic Physics010306 general physicsAdiabatic processENTANGLEMENTPhysicsMEMORYCavity quantum electrodynamicsATOMLaserAtomic and Molecular Physics and OpticsPULSESSINGLE-PHOTONDissipative systemPhysics::Accelerator PhysicsAtomic physicsGENERATION
researchProduct

Intermittent decoherence blockade in a chiral ring environment

2021

It has long been recognized that emission of radiation from atoms is not an intrinsic property of individual atoms themselves, but it is largely affected by the characteristics of the photonic environment and by the collective interaction among the atoms. A general belief is that preventing full decay and/or decoherence requires the existence of dark states, i.e., dressed light-atom states that do not decay despite the dissipative environment. Here, we show that, contrary to such a common wisdom, decoherence suppression can be intermittently achieved on a limited time scale, without the need for any dark state, when the atom is coupled to a chiral ring environment, leading to a highly non-e…

Quantum decoherenceQuantum informationScienceFOS: Physical sciencesRadiationRing (chemistry)Quantum mechanics01 natural sciencesArticle010305 fluids & plasmasQuantum mechanics0103 physical sciences010306 general physicsPhysicsQuantum PhysicsMultidisciplinarybusiness.industryQuantum feedbackQRDecoherence spontaneous emission Open quantum systemsDark stateDissipative systemMedicineCollective interactionPhotonicsbusinessQuantum Physics (quant-ph)Qubits
researchProduct

Resonance interaction energy between two entangled atoms in a photonic bandgap environment

2018

We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction…

Quantum decoherenceScienceVacuum stateFOS: Physical sciences01 natural sciencesResonance (particle physics)Article010305 fluids & plasmasPhotonic bandgap materialsDispersion relation0103 physical sciencesSpontaneous emissionPhotonic crystal010306 general physicsPhysicsQuantum PhysicsMultidisciplinaryQRInteraction energyResonance dipole-dipole interactionExcited stateMedicineResonance dipole-dipole interaction; Photonic crystals; Photonic bandgap materialsAtomic physicsQuantum Physics (quant-ph)Ground state
researchProduct

Design of a Lambda system for population transfer in superconducting nanocircuits

2013

The implementation of a Lambda scheme in superconducting artificial atoms could allow detec- tion of stimulated Raman adiabatic passage (STIRAP) and other quantum manipulations in the microwave regime. However symmetries which on one hand protect the system against decoherence, yield selection rules which may cancel coupling to the pump external drive. The tradeoff between efficient coupling and decoherence due to broad-band colored Noise (BBCN), which is often the main source of decoherence is addressed, in the class of nanodevices based on the Cooper pair box (CPB) design. We study transfer efficiency by STIRAP, showing that substantial efficiency is achieved for off-symmetric bias only i…

Quantum decoherenceStimulated Raman adiabatic passageFOS: Physical sciencesSINGLE COOPER PAIR ADIABATIC PASSAGE QUANTUM STATES FLUX QUBIT SPECTROSCOPY MOLECULES CIRCUIT ATOMS NOISE BOX01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)Quantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsQuantumQuantum computerPhysicsCouplingQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsColors of noiseCooper pairQuantum Physics (quant-ph)
researchProduct

GHZ state generation of three Josephson qubits in the presence of bosonic baths

2013

We analyze an entangling protocol to generate tripartite Greenberger-Horne-Zeilinger states in a system consisting of three superconducting qubits with pairwise coupling. The dynamics of the open quantum system is investigated by taking into account the interaction of each qubit with an independent bosonic bath with an ohmic spectral structure. To this end a microscopic master equation is constructed and exactly solved. We find that the protocol here discussed is stable against decoherence and dissipation due to the presence of the external baths.

Quantum decoherencequantum statistical methodFOS: Physical sciencesQuantum entanglement01 natural sciences010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)quantum fluctuations quantum noise quantum jumpQuantum nonlocalityOpen quantum systemQuantum mechanics0103 physical sciencesMaster equationdecoherence010306 general physicsSuperconductivityPhysicsQuantum PhysicsCondensed Matter - Superconductivityquantum nonlocalityQuantum PhysicsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsGreenberger–Horne–Zeilinger stateQubitopen systemQuantum Physics (quant-ph)entanglementquantum state engineering and measurementJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

The quantum trajectory approach to geometric phase for open systems

2005

The quantum jump method for the calculation of geometric phase is reviewed. This is an operational method to associate a geometric phase to the evolution of a quantum system subjected to decoherence in an open system. The method is general and can be applied to many different physical systems, within the Markovian approximation. As examples, two main source of decoherence are considered: dephasing and spontaneous decay. It is shown that the geometric phase is to very large extent insensitive to the former, i.e. it is independent of the number of jumps determined by the dephasing operator.

Quantum phase transitionPhysicsNuclear and High Energy PhysicsQuantum decoherenceDecoherence-free subspacesDephasingquantum computationGeometric phaseGeneral Physics and AstronomyAstronomy and AstrophysicsOpen quantum systemClassical mechanicsQuantum error correctionQuantum processQuantum dissipationdecoherence
researchProduct

Ultrafast critical ground state preparation via bang-bang protocols

2020

The fast and faithful preparation of the ground state of quantum systems is a challenging task but crucial for several applications in the realm of quantum-based technologies. Decoherence poses a limit to the maximum time-window allowed to an experiment to faithfully achieve such desired states. This is of particular significance in critical systems, where the vanishing energy gap challenges an adiabatic ground state preparation. We show that a bang-bang protocol, consisting of a time evolution under two different values of an externally tunable parameter, allows for a high-fidelity ground state preparation in evolution times no longer than those required by the application of standard opti…

Quantum phase transitionQuantum decoherenceGeneral Physics and AstronomyFOS: Physical sciencesPhysics and Astronomy(all)Topology01 natural sciences010305 fluids & plasmasquantum optimal protocols/dk/atira/pure/subjectarea/asjc/31000103 physical sciencesQuantum information010306 general physicsAdiabatic processQuantumPhysicsquantum phase transitionsQuantum PhysicsTime evolutionOptimal controlquantum control quantum optimal protocols quantum phase transitionsQuantum Gases (cond-mat.quant-gas)Ground statequantum controlQuantum Physics (quant-ph)Condensed Matter - Quantum Gases
researchProduct

ChemInform Abstract: Coherence and Organisation in Lanthanoid Complexes: From Single Ion Magnets to Spin Qubits

2016

Molecular magnetism is reaching a degree of development that will allow for the rational design of sophisticated systems. Among these, here we will focus on those that display single-molecule magnetic behaviour, i.e. classical memories, and on magnetic molecules that can be used as molecular spin qubits, the irreducible components of any quantum technology. Compared with candidates developed from physics, a major advantage of molecular spin qubits stems from the power of chemistry for the tailored and inexpensive synthesis of new systems for their experimental study; in particular, the so-called lanthanoid-based single-ion magnets, which have for a long time been one of the hottest topics i…

Quantum technologyTheoretical physicsQuantum decoherenceChemistryMagnetismMagnetQubitGeneral MedicineQuantum informationQuantumCoherence (physics)ChemInform
researchProduct

Entanglement trapping in structured environments

2008

The entanglement dynamics of two independent qubits each embedded in a structured environment under conditions of inhibition of spontaneous emission is analyzed, showing entanglement trapping. We demonstrate that entanglement trapping can be used efficiently to prevent entanglement sudden death. For the case of realistic photonic band-gap materials, we show that high values of entanglement trapping can be achieved. This result is of both fundamental and applicative interest since it provides a physical situation where the entanglement can be preserved and manipulated, e.g. by Stark-shifting the qubit transition frequency outside and inside the gap.

Settore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciQuantum decoherencePopulationFOS: Physical sciences42.50.-p71.55.JvQuantum entanglement01 natural sciencesSudden death010305 fluids & plasmasQuantum mechanics0103 physical sciencesSpontaneous emission010306 general physicseducationQuantumPhysicsQuantum opticsQuantum Physicseducation.field_of_studyQuantum PhysicsAtomic and Molecular Physics and Optics03.67.MnQubit03.65.YzQuantum Physics (quant-ph)Physical Review A
researchProduct