Search results for "Quantum electrodynamics."

showing 10 items of 797 documents

Coherent magneto-elastic oscillations in superfluid magnetars

2016

We study the effect of superfluidity on torsional oscillations of highly magnetised neutron stars (magnetars) with a microphysical equation of state by means of two-dimensional, magnetohydrodynamical- elastic simulations. The superfluid properties of the neutrons in the neutron star core are treated in a parametric way in which we effectively decouple part of the core matter from the oscillations. Our simulations confirm the existence of two groups of oscillations, namely continuum oscillations that are confined to the neutron star core and are of Alfv\'enic character, and global oscillations with constant phase and that are of mixed magneto-elastic type. The latter might explain the quasi-…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Magnetar01 natural sciencesAsteroseismologyGeneral Relativity and Quantum CosmologyMagnetic fieldSuperfluidityNeutron starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceNormal modeQuantum electrodynamics0103 physical sciencesNeutronMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Diffusivity in force-free simulations of global magnetospheres

2021

Abstract: Assuming that the numerical diffusivity triggered by violations of the force-free electrodynamics constraints is a proxy for the physical resistivity, we examine its impact on the overall dynamics of force-free aligned pulsar magnetospheres endowed with an equatorial current sheet. We assess the constraint violations as a diffusivity source. The effects of modifications on electric fields used to restore force-free conditions are not confined to the equatorial current sheet, but modify the magnetospheric dynamics on timescales shorter than the pulsar rotational period. These corrections propagate especially via a channel that was unexplored, namely, changes induced to the electric…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFluxCharge densityFOS: Physical sciencesAstronomy and AstrophysicsThermal diffusivityLuminositysymbols.namesakeCurrent sheetMaxwell's equationsPulsarSpace and Planetary ScienceQuantum electrodynamicsPoynting vectorsymbolsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct

Modulating the magnetosphere of magnetars by internal magneto-elastic oscillations

2014

We couple internal torsional, magneto-elastic oscillations of highly magnetized neutron stars (magnetars) to their magnetospheres. The corresponding axisymmetric perturbations of the external magnetic field configuration evolve as a sequence of linear, force-free equilibria that are completely determined by the background magnetic field configuration and by the perturbations of the magnetic field at the surface. The perturbations are obtained from simulations of magneto-elastic oscillations in the interior of the magnetar. While such oscillations can excite travelling Alfv\'en waves in the exterior of the star only in a very limited region close to the poles, they still modulate the near ma…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaRotational symmetryMagnetosphereFOS: Physical sciencesAstronomy and AstrophysicsMagneto elasticMagnetar01 natural sciencesAsteroseismologyMagnetic fieldNeutron starClassical mechanicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceQuantum electrodynamics0103 physical sciencesMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Explosion and Final State of an Unstable Reissner-Nordström Black Hole

2016

A Reissner-Nordstr\"om black hole (BH) is superradiantly unstable against spherical perturbations of a charged scalar field, enclosed in a cavity, with frequency lower than a critical value. We use numerical relativity techniques to follow the development of this unstable system -- dubbed a charged BH bomb -- into the non-linear regime, solving the full Einstein--Maxwell--Klein-Gordon equations, in spherical symmetry. We show that: $i)$ the process stops before all the charge is extracted from the BH; $ii)$ the system settles down into a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. For low scalar fie…

PhysicsHigh Energy Physics - Theory010308 nuclear & particles physicsHorizonGeneral Physics and AstronomyFOS: Physical sciencesCharge (physics)General Relativity and Quantum Cosmology (gr-qc)Charged black holeCritical value01 natural sciencesGeneral Relativity and Quantum CosmologyBlack holeNumerical relativityGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum electrodynamics0103 physical sciencesCircular symmetry010306 general physicsScalar fieldPhysical Review Letters
researchProduct

Four-gluon scattering at three loops, infrared structure and Regge limit

2016

We compute the three-loop four-gluon scattering amplitude in maximally supersymmetric Yang-Mills theory, including its full color dependence. Our result is the first complete computation of a non-planar four-particle scattering amplitude to three loops in four-dimensional gauge theory and consequently provides highly non-trivial data for the study of non-planar scattering amplitudes. We present the amplitude as a Laurent expansion in the dimensional regulator to finite order, with coefficients composed of harmonic poly-logarithms of uniform transcendental weight, and simple rational prefactors. Our computation provides an independent check of a recent result for three-loop corrections to th…

PhysicsHigh Energy Physics - Theory010308 nuclear & particles physicsScatteringLaurent seriesHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesGluonScattering amplitudeMassless particleHigh Energy Physics - PhenomenologyHigh Energy Physics::TheoryAmplitudeSingularityHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Quantum electrodynamics0103 physical sciencesGauge theory010306 general physicsParticle Physics - Theory
researchProduct

Late time approach to Hawking radiation: Terms beyond leading order

2019

Black hole evaporation is studied using wave packets for the modes. These allow for approximate frequency and time resolution. The leading order late time behavior gives the well known Hawking radiation that is independent of how the black hole formed. The focus here is on the higher order terms and the rate at which they damp at late times. Some of these terms carry information about how the black hole formed. A general argument is given which shows that the damping is significantly slower (power law) than what might be naively expected from a stationary phase approximation (exponential). This result is verified by numerical calculations in the cases of 2D and 4D black holes that form from…

PhysicsHigh Energy Physics - Theory010308 nuclear & particles physicsWave packetAstrophysics::High Energy Astrophysical PhenomenaShell (structure)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesNull (physics)Power lawGeneral Relativity and Quantum CosmologyExponential functionBlack holeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum electrodynamics0103 physical sciencesStationary phase approximation010306 general physicsHawking radiation
researchProduct

Generalized curvature and the equations of D=11 supergravity

2005

It is known that, for zero fermionic sector, the bosonic equations of Cremmer-Julia-Scherk eleven-dimensional supergravity can be collected in a compact expression which is a condition on the curvature of the generalized connection. Here we peresent the equation which collects all the bosonic equations of D=11 supergravity when the gravitino is nonvanishing.

PhysicsHigh Energy Physics - TheoryCondensed Matter::Quantum GasesNuclear and High Energy PhysicsSupergravityHigh Energy Physics::PhenomenologyZero (complex analysis)FOS: Physical sciencesExpression (computer science)CurvatureCovariant derivativeConnection (mathematics)High Energy Physics::TheoryGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum electrodynamicsGravitinoMathematics::Differential GeometryMathematical physics
researchProduct

Geonic black holes and remnants in Eddington-inspired Born–Infeld gravity

2014

We show that electrically charged solutions within the Eddington-inspired Born–Infeld theory of gravity replace the central singularity by a wormhole supported by the electric field. As a result, the total energy associated with the electric field is finite and similar to that found in the Born–Infeld electromagnetic theory. When a certain charge-to-mass ratio is satisfied, in the lowest part of the mass and charge spectrum the event horizon disappears, yielding stable remnants. We argue that quantum effects in the matter sector can lower the mass of these remnants from the Planck scale down to the TeV scale.

PhysicsHigh Energy Physics - TheoryGravity (chemistry)Scale (ratio)Physics and Astronomy (miscellaneous)Event horizonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCharge (physics)General Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyGravitationSingularityHigh Energy Physics - Theory (hep-th)Quantum electrodynamicsElectric fieldWormholeRegular Article - Theoretical PhysicsEngineering (miscellaneous)The European Physical Journal C
researchProduct

Hamiltonian lattice QCD at finite density: equation of state in the strong coupling limit

2001

The equation of state of Hamiltonian lattice QCD at finite density is examined in the strong coupling limit by constructing a solution to the equation of motion corresponding to an effective Hamiltonian describing the ground state of the many body system. This solution exactly diagonalizes the Hamiltonian to second order in field operators for all densities and is used to evaluate the vacuum energy density from which we obtain the equation of state. We find that up to and beyond the chiral symmetry restoration density the pressure of the quark Fermi sea can be negative indicating its mechanical instability. Our result is in qualitative agreement with continuum models and should be verifiabl…

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsChiral perturbation theoryNuclear TheoryHigh Energy Physics::LatticeLattice field theoryQCD vacuumAstrophysics (astro-ph)High Energy Physics - Lattice (hep-lat)FOS: Physical sciencesLattice QCDAstrophysicsNuclear Theory (nucl-th)symbols.namesakeHigh Energy Physics - PhenomenologyHamiltonian lattice gauge theoryHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeHigh Energy Physics - Theory (hep-th)Quantum electrodynamicssymbolsHamiltonian (quantum mechanics)Ground stateLattice model (physics)
researchProduct

Super Heavy Dark Matter Anisotropies from D-particles in the Early Universe

2004

We discuss a way of producing anisotropies in the spectrum of superheavy Dark matter, which are due to the distortion of the inflationary space time induced by the recoil of D-particles upon their scattering with ordinary string matter in the Early Universe. We calculate such distortions by world-sheet Liouville string theory (perturbative) methods. The resulting anisotropies are found to be proportional to the average recoil velocity and density of the D-particles. In our analysis we employ a regulated version of de Sitter space, allowing for graceful exit from inflation. This guarantees the asymptotic flatness of the space time, as required for a consistent interpretation, within an effec…

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsDe Sitter spaceSpace timeDark matterAstrophysics (astro-ph)FísicaFOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)String theoryAstrophysicsAtomic and Molecular Physics and OpticsGraceful exitWKB approximationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum electrodynamicsEffective field theoryFlatness (cosmology)
researchProduct