6533b86efe1ef96bd12cc05a

RESEARCH PRODUCT

Modulating the magnetosphere of magnetars by internal magneto-elastic oscillations

Nikolaos StergioulasPablo Cerdá-duránJosé A. FontEwald MüllerMichael Gabler

subject

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaRotational symmetryMagnetosphereFOS: Physical sciencesAstronomy and AstrophysicsMagneto elasticMagnetar01 natural sciencesAsteroseismologyMagnetic fieldNeutron starClassical mechanicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceQuantum electrodynamics0103 physical sciencesMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomena010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)

description

We couple internal torsional, magneto-elastic oscillations of highly magnetized neutron stars (magnetars) to their magnetospheres. The corresponding axisymmetric perturbations of the external magnetic field configuration evolve as a sequence of linear, force-free equilibria that are completely determined by the background magnetic field configuration and by the perturbations of the magnetic field at the surface. The perturbations are obtained from simulations of magneto-elastic oscillations in the interior of the magnetar. While such oscillations can excite travelling Alfv\'en waves in the exterior of the star only in a very limited region close to the poles, they still modulate the near magnetosphere by inducing a time-dependent twist between the foot-points of closed magnetic field lines that exit the star at a polar angle $\gtrsim 0.19\,$rad. Moreover, we find that for a dipole-like background magnetic field configuration the magnetic field modulations in the magnetosphere, driven by internal oscillations, can only be symmetric with respect to the equator. This is in agreement with our previous findings, where we interpreted the observed quasi-periodic oscillations in the X-ray tail of magnetar bursts as driven by the family of internal magneto-elastic oscillations with symmetric magnetic field perturbations.

https://dx.doi.org/10.48550/arxiv.1407.7672