Search results for "Quantum electrodynamics."

showing 10 items of 797 documents

Effective Field Theory for Jet Processes

2015

Processes involving narrow jets receive perturbative corrections enhanced by logarithms of the jet opening angle and the ratio of the energies inside and outside the jets. Analyzing cone-jet processes in effective field theory, we find that in addition to soft and collinear fields their description requires degrees of freedom which are simultaneously soft and collinear to the jets. These collinear-soft particles can resolve individual collinear partons, leading to a complicated multi-Wilson-line structure of the associated operators at higher orders. Our effective field theory provides, for the first time, a factorization formula for a cone-jet process, which fully separates the physics at …

PhysicsJet (fluid)Wilson loop010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaDegrees of freedom (physics and chemistry)FOS: Physical sciencesGeneral Physics and AstronomyPartonRenormalization group01 natural sciencesHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)FactorizationQuantum electrodynamics0103 physical sciencesEffective field theoryHigh Energy Physics::ExperimentResummation010306 general physicsPhysical Review Letters
researchProduct

Microwave nanobolometer based on proximity Josephson junctions

2014

We introduce a microwave bolometer aimed at high-quantum-efficiency detection of wave packet energy within the framework of circuit quantum electrodynamics, the ultimate goal being single microwave photon detection. We measure the differential thermal conductance between the detector and its heat bath, obtaining values as low as $5\phantom{\rule{4.pt}{0ex}}\text{fW}/\mathrm{K}$ at $50\phantom{\rule{4.pt}{0ex}}\text{mK}$. This is one tenth of the thermal conductance quantum and corresponds to a theoretical lower bound on noise-equivalent power of order ${10}^{\ensuremath{-}20}\phantom{\rule{4.pt}{0ex}}\text{W}/\sqrt{\text{Hz}}$ at $50\phantom{\rule{4.pt}{0ex}}\text{mK}$. By measuring the dif…

PhysicsJosephson effectta214Condensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsta114Bolometerta221FOS: Physical sciencesOrder (ring theory)Condensed Matter PhysicsCoupling (probability)Thermal conductance quantumElectronic Optical and Magnetic Materialslaw.inventionPi Josephson junctionCircuit quantum electrodynamicsbolometerlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)Energy (signal processing)ta218proximity Josephson junctionPhysical Review B
researchProduct

Observation of collapse arrest in pure kerr media sustained by a parametric interaction

2013

We demonstrate a parametric interaction based on four wave mixing that can arrest the collapse and stabilize solitary propagation in a pure Kerr material by controlling the wavelength of the interacting beams.

PhysicsKerr effectCollapse (topology)Physics::OpticsCollapse arrestSettore ING-INF/01 - ElettronicaSolitary propagationWavelengthFour-wave mixingKerr mediaParametric interactionsQuantum electrodynamicsQuantum mechanicsKerr materialsLight beamNonlinear OpticsPhase velocityRefractive indexNonlinear Sciences::Pattern Formation and SolitonsParametric statistics
researchProduct

Translationally invariant coupled cluster method in coordinate space for nuclei

2002

We study a formulation of the translationally invariant coupled cluster method in coordinate space for finite nuclei. The new formulation remedies convergence problems that plagued previous calculations in configuration space. The method is applied to light nuclei using semi-realistic central interactions.

PhysicsLight nucleusNuclear and High Energy Physics/dk/atira/pure/subjectarea/asjc/3100/3106Nuclear structureInvariant (physics)Physics and Astronomy(all)Coupled clusterClassical mechanics/dk/atira/pure/subjectarea/asjc/3100Quantum electrodynamicsNuclear binding energyConfiguration spaceCLOSED-SHELL NUCLEI; MODEL-CALCULATIONS; CBF THEORY; DEPENDENT CORRELATIONS; PAIR CORRELATIONS; FINITE SYSTEMS; GROUND-STATE; JASTROW; O-16; Nuclear binding energy; Nuclear model; Nuclear structure; Nucleon-nucleon potential (formulation of translationally invariant coupled cluster method in coordinate space for closed shell nuclei within 0p-shell with use of semi-realistic central nucleon-nucleon interactions)Coordinate spaceGround state
researchProduct

Next-to-leading order Balitsky-Kovchegov equation with resummation

2016

We solve the Balitsky-Kovchegov evolution equation at next-to-leading order accuracy including a resummation of large single and double transverse momentum logarithms to all orders. We numerically determine an optimal value for the constant under the large transverse momentum logarithm that enables including a maximal amount of the full NLO result in the resummation. When this value is used the contribution from the $\alpha_s^2$ terms without large logarithms is found to be small at large saturation scales and at small dipoles. Close to initial conditions relevant for phenomenological applications these fixed order corrections are shown to be numerically important.

PhysicsLogarithmta114Nuclear Theory010308 nuclear & particles physicsFOS: Physical sciencesBalitsky-Kovchegov equation01 natural sciencesgluonsNuclear Theory (nucl-th)DipoleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamics0103 physical sciencesEvolution equationquantum chromodynamicscolor glass condensateOrder (group theory)Boundary value problemResummation010306 general physicsConstant (mathematics)Saturation (chemistry)next-to-leading order corrections
researchProduct

Electromagnetic Multipole Moments and Transitions

2007

In the preceding chapter we constructed and discussed the simplest possible nuclear wave functions. This construction was done at the mean-field level. No account was taken of configuration mixing caused by the nuclear residual interaction. These simple wave functions produce degeneracies in energy spectra. This is contrary to experimental data, so improved wave functions are called for.

PhysicsMagnetic momentSimple (abstract algebra)Quantum electrodynamicsMultipole expansionResidualWave functionEnergy (signal processing)Mixing (physics)Spectral line
researchProduct

Coulomb effects in three-body reactions with two charged particles

1978

We present the details of a novel approach to the treatment of Coulomb effects in atomic and nuclear reactions of the three-body type in which two of the particles are charged. Based on three-body integral equations the formalism allows the practical calculation of elastic, inelastic, rearrangement, and breakup processes with full inclusion of the Coulomb repulsion or attraction in a mathematically correct way. No restrictions need to be made concerning the form of the short-range interactions between the three pairs. A particular virtue of our method lies in the fact that it corroborates, and gives precise meaning to, the intuitively anticipated conception of how to describe such reactions.

PhysicsMany-body problemElastic scatteringNuclear and High Energy PhysicsFaddeev equationsClassical mechanicsQuantum electrodynamicsElectric fieldCoulombInelastic scatteringIntegral equationCharged particlePhysical Review C
researchProduct

Random polarisations of the dipoles

2012

We extend the dipole formalism for massless and massive partons to random polarisations of the external partons. The dipole formalism was originally formulated for spin-summed matrix elements and later extended to individual helicity eigenstates. For efficiency reasons one wants to replace the spin sum by a smooth integration over additional variables. This requires the extension of the dipole formalism to random polarisations. In this paper we derive the modified subtraction terms. We only modify the real subtraction terms, the integrated subtraction terms do not require any modifications.

PhysicsMassless particleNuclear and High Energy PhysicsFormalism (philosophy of mathematics)DipoleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamicsSubtractionFOS: Physical sciencesPartonHelicityEigenvalues and eigenvectors
researchProduct

O(αs)corrections to the correlator of finite mass baryon currents

2000

We present analytical next-to-leading order results for the correlator of baryonic currents at the three-loop level with one finite mass quark. We obtain the massless and the HQET limit of the correlator from the general formula as particular cases. We also give explicit expressions for the moments of the spectral density.

PhysicsMassless particleQuantum chromodynamicsBaryonQuarkNuclear and High Energy PhysicsParticle physicsQuantum electrodynamicsHigh Energy Physics::PhenomenologyHyperonSpectral densityLimit (mathematics)Spectral methodPhysical Review D
researchProduct

Solution of self-consistent equations for the N3LO nuclear energy density functional in spherical symmetry. The program hosphe (v1.02)

2010

Abstract We present solution of self-consistent equations for the N 3 LO nuclear energy density functional. We derive general expressions for the mean fields expressed as differential operators depending on densities and for the densities expressed in terms of derivatives of wave functions. These expressions are then specified to the case of spherical symmetry. We also present the computer program hosphe (v1.02), which solves the self-consistent equations by using the expansion of single-particle wave functions on the spherical harmonic oscillator basis. Program summary Program title: HOSPHE (v1.02) Catalogue identifier: AEGK_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEGK_…

PhysicsMathematical analysisGeneral Physics and AstronomySpherical harmonicsCPU timeDifferential operatorsymbols.namesakeHardware and ArchitectureQuantum electrodynamicsSelf-consistent mean fieldsymbolsNeutronCircular symmetryWave functionHamiltonian (quantum mechanics)Computer Physics Communications
researchProduct