Search results for "Quantum gravity"

showing 10 items of 126 documents

Fractal Spacetime Structure in Asymptotically Safe Gravity

2005

Four-dimensional Quantum Einstein Gravity (QEG) is likely to be an asymptotically safe theory which is applicable at arbitrarily small distance scales. On sub-Planckian distances it predicts that spacetime is a fractal with an effective dimensionality of 2. The original argument leading to this result was based upon the anomalous dimension of Newton's constant. In the present paper we demonstrate that also the spectral dimension equals 2 microscopically, while it is equal to 4 on macroscopic scales. This result is an exact consequence of asymptotic safety and does not rely on any truncation. Contact is made with recent Monte Carlo simulations.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsSpacetimeTruncationMonte Carlo methodAsymptotic safety in quantum gravityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum Cosmologysymbols.namesakeClassical mechanicsFractalHigh Energy Physics - Theory (hep-th)symbolsEinsteinConstant (mathematics)Quantum
researchProduct

Fluid membranes and2dquantum gravity

2011

We study the RG flow of two dimensional (fluid) membranes embedded in Euclidean D-dimensional space using functional RG methods based on the effective average action. By considering a truncation ansatz for the effective average action with both extrinsic and intrinsic curvature terms we derive a system of beta functions for the running surface tension, bending rigidity and Gaussian rigidity. We look for non-trivial fixed points but we find no evidence for a crumpling transition at $T\neq0$. Finally, we propose to identify the $D\rightarrow 0$ limit of the theory with two dimensional quantum gravity. In this limit we derive new beta functions for both cosmological and Newton's constants.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsStatistical Mechanics (cond-mat.stat-mech)GaussianAsymptotic safety in quantum gravityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Fixed pointGeneral Relativity and Quantum CosmologyRenormalizationSurface tensionsymbols.namesakePhysics - Statistical MechanicsHigh Energy Physics - Theory (hep-th)Quantum mechanicsEuclidean geometrysymbolsQuantum gravityHigh Energy Physics - Theory; High Energy Physics - Theory; Physics - Statistical Mechanics; General Relativity and Quantum CosmologyCondensed Matter - Statistical MechanicsAnsatzPhysical Review D
researchProduct

Flow equation of quantum Einstein gravity in a higher-derivative truncation

2002

Motivated by recent evidence indicating that Quantum Einstein Gravity (QEG) might be nonperturbatively renormalizable, the exact renormalization group equation of QEG is evaluated in a truncation of theory space which generalizes the Einstein-Hilbert truncation by the inclusion of a higher-derivative term $(R^2)$. The beta-functions describing the renormalization group flow of the cosmological constant, Newton's constant, and the $R^2$-coupling are computed explicitly. The fixed point (FP) properties of the 3-dimensional flow are investigated, and they are confronted with those of the 2-dimensional Einstein-Hilbert flow. The non-Gaussian FP predicted by the latter is found to generalize to …

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsTruncationAsymptotic safety in quantum gravityFOS: Physical sciencesOrder (ring theory)Gaussian fixed pointGeneral Relativity and Quantum Cosmology (gr-qc)Fixed pointRenormalization groupCoupling (probability)General Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum gravityMathematical physicsPhysical Review D
researchProduct

Quantum geometry and microscopic black hole entropy

2006

9 pages, 6 figures.-- PACS nrs.: 04.60.Pp, 04.70.Dy.-- ISI Article Identifier: 000242448900013.-- Published online on Nov 28, 2006.

High Energy Physics - TheoryPhysicsQuantum geometryPhysics and Astronomy (miscellaneous)LogarithmEntropy (statistical thermodynamics)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Loop quantum gravityGeneral Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum Cosmologysymbols.namesakeHigh Energy Physics - Theory (hep-th)[PACS] Quantum aspects of black holes evaporation thermodynamicssymbolsPlanckBlack hole thermodynamicsQuantum[PACS] Loop quantum gravity quantum geometry spin foamsMathematical physics
researchProduct

Tales of 1001 gluons

2016

These lectures are centred around tree-level scattering amplitudes in pure Yang-Mills theories, the most prominent example is given by the tree-level gluon amplitudes of QCD. I will discuss several ways of computing these amplitudes, illustrating in this way recent developments in perturbative quantum field theory. Topics covered in these lectures include colour decomposition, spinor and twistor methods, off- and on-shell recursion, MHV amplitudes and MHV expansion, the Grassmannian and the amplituhedron, the scattering equations and the CHY representation. At the end of these lectures there will be an outlook on the relation between pure Yang-Mills amplitudes and scattering amplitudes in p…

High Energy Physics - TheoryQuantum chromodynamicsPhysicsParticle physicsSpinor010308 nuclear & particles physicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesAmplituhedronScattering amplitudeTwistor theoryHigh Energy Physics - PhenomenologyHigh Energy Physics::TheoryTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)0103 physical sciencesMHV amplitudesQuantum gravityQuantum field theory010306 general physicsPhysics Reports
researchProduct

Critical reflections on asymptotically safe gravity

2020

Asymptotic safety is a theoretical proposal for the ultraviolet completion of quantum field theories, in particular for quantum gravity. Significant progress on this program has led to a first characterization of the Reuter fixed point. Further advancement in our understanding of the nature of quantum spacetime requires addressing a number of open questions and challenges. Here, we aim at providing a critical reflection on the state of the art in the asymptotic safety program, specifying and elaborating on open questions of both technical and conceptual nature. We also point out systematic pathways, in various stages of practical implementation, towards answering them. Finally, we also take…

High Energy Physics - TheoryReflection (computer programming)Computer scienceEffective field theoryMaterials Science (miscellaneous)Asymptotic safety in quantum gravityBiophysicsGeneral Physics and AstronomyUnitarityFixed pointQuantum spacetime01 natural sciences530General Relativity and Quantum CosmologyTheoretical High Energy Physics0103 physical sciencesCalculusddc:530High Energy PhysicsQuantum gravitationQuantum field theoryPhysical and Theoretical Chemistry010306 general physicsRunning couplingsMathematical PhysicsStructure (mathematical logic)ObservablesObservablelcsh:QC1-999Asymptotic safetySettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciQuantum gravityRenormalization grouplcsh:Physics
researchProduct

Running Immirzi Parameter and Asymptotic Safety

2011

We explore the renormalization group (RG) properties of quantum gravity, using the vielbein and the spin connection as the fundamental field variables. We require the effective action to be invariant under the semidirect product of spacetime diffeomorphisms and local frame rotations. Starting from the corresponding functional integral we review the construction of an appropriate theory space and an exact funtional RG equation operating on it. We then solve this equation on a truncated space defined by a three parameter family of Holst-type actions which involve a running Immirzi parameter. We find evidence for the existence of an asymptotically safe fundamental theory. It is probably inequi…

High Energy Physics - TheorySemidirect productSpacetimeImmirzi parameterAsymptotic safety in quantum gravityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Renormalization groupGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum gravitySpin connectionEffective actionMathematical physicsMathematics
researchProduct

Born–Infeld inspired modifications of gravity

2017

General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordin…

High Energy Physics - Theorystar: compactcosmological model[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]space-time: black holeGeneral Physics and AstronomyAstrophysics01 natural sciencesGeneral Relativity and Quantum Cosmology[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th]Gravitationquantum gravity: effectBorn–Infeld gravityPhysicsenergy: highBlack holes[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]formationCosmologyregularizationcurvaturewormhole[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational singularitySingularitiesAstrophysics - Cosmology and Nongalactic AstrophysicsGravity (chemistry)Cosmology and Nongalactic Astrophysics (astro-ph.CO)General relativityEarly universegeneral relativity: solutionFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Theoretical physicsGeneral Relativity and Quantum Cosmologyspace-time: singularity0103 physical sciencesunitaritystructureWormholeinflation010306 general physicsCompact objectsSpacetime010308 nuclear & particles physicsscale: PlanckBlack holeBorn-Infeld modelHigh Energy Physics - Theory (hep-th)gravitationQuantum gravity[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Statistical Thermodynamics of Polymer Quantum Systems

2011

Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such an approach both non-singular cosmological models and a microscopic basis for the entropy of some black holes have arisen. Also important physical questions for these systems involve thermodynamics. With this motivation, in this work, we study the statistical thermody- namics of two one dimensional polymer quantum systems: an ensemble of oscillators that describe a solid and a bunch of non-interacting particles in a box, which thus form an ideal…

Length scaleHigh Energy Physics - TheoryCanonical quantizationThermodynamicsFOS: Physical sciencesLoop quantum gravityGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyQuantization (physics)canonical quantizationQuantum mechanicsstatistical thermodynamicsQuantumBlack hole thermodynamicsMathematical PhysicsCondensed Matter - Statistical MechanicsPhysicsQuantum geometryQuantitative Biology::BiomoleculesStatistical Mechanics (cond-mat.stat-mech)loop quantum gravitylcsh:Mathematics82B30 81S05 81Q65 82B20 83C45lcsh:QA1-939Ideal gasCondensed Matter::Soft Condensed MatterClassical mechanicsHigh Energy Physics - Theory (hep-th)Geometry and TopologyAnalysis
researchProduct

Why the Cosmological Constant Seems to Hardly Care About Quantum Vacuum Fluctuations: Surprises From Background Independent Coarse Graining

2020

International audience; Background Independence is a sine qua non for every satisfactory theory of Quantum Gravity. In particular if one tries to establish a corresponding notion of Wilsonian renormalization, or coarse graining, it presents a major conceptual and technical difficulty usually. In this paper we adopt the approach of the gravitational Effective Average Action and demonstrate that generically coarse graining in Quantum Gravity and in standard field theories on a non-dynamical spacetime are profoundly different. By means of a concrete example, which in connection with the cosmological constant problem is also interesting in its own right, we show that the surprising and sometime…

Materials Science (miscellaneous)Background independent quantum gravityBiophysicsAsymptotic safety in quantum gravityGeneral Physics and AstronomyCosmological constantnonperturbativeasymptotic safety01 natural sciencesrenormalizationGravitationRenormalizationTheoretical physicsVacuum energyFunctional renormalisation group0103 physical sciencesultravioletBackground independencePhysical and Theoretical Chemistry010306 general physicsMathematical PhysicsPhysicsenergy: highcosmological constantbackgroundfunctional renormalization grouplcsh:QC1-999fluctuation: vacuumspace-timegravitationquantum gravity[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Quantum gravityrenormalisation grouprenormalization grouplcsh:PhysicsCosmological constant problem
researchProduct