Search results for "Quantum physic"

showing 10 items of 1596 documents

Resonant Transitions Due to Changing Boundaries

2019

The problem of a particle confined in a box with moving walls is studied, focusing on the case of small perturbations which do not alter the shape of the boundary (\lq pantography\rq). The presence of resonant transitions involving the natural transition frequencies of the system and the Fourier transform of the velocity of the walls of the box is brought to the light. The special case of a pantographic change of a circular box is analyzed in dept, also bringing to light the fact that the movement of the boundary cannot affect the angular momentum of the particle.

Statistics and ProbabilityPhysicsQuantum PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciFOS: Physical sciencesBoundary (topology)Statistical and Nonlinear PhysicsBoundary conditionMechanics01 natural sciencesSettore FIS/03 - Fisica Della Materia010305 fluids & plasmastunneling0103 physical sciencesParticlemoving BoundarieQuantum Physics (quant-ph)010306 general physicsMathematical PhysicsOpen Systems & Information Dynamics
researchProduct

Non-Markovian dynamics of interacting qubit pair coupled to two independent bosonic baths

2009

The dynamics of two interacting spins coupled to separate bosonic baths is studied. An analytical solution in Born approximation for arbitrary spectral density functions of the bosonic environments is found. It is shown that in the non-Markovian cases concurrence "lives" longer or reaches greater values.

Statistics and ProbabilityPhysicsQuantum PhysicsSpinsnon-Markovian spin modelsDynamics (mechanics)FOS: Physical sciencesGeneral Physics and AstronomyMarkov processSpectral densityStatistical and Nonlinear PhysicsConcurrencesymbols.namesakeModeling and SimulationQubitQuantum mechanicssymbolsBorn approximationQuantum Physics (quant-ph)Mathematical Physics
researchProduct

Cauchy flights in confining potentials

2009

We analyze confining mechanisms for L\'evy flights evolving under an influence of external potentials. Given a stationary probability density function (pdf), we address the reverse engineering problem: design a jump-type stochastic process whose target pdf (eventually asymptotic) equals the preselected one. To this end, dynamically distinct jump-type processes can be employed. We demonstrate that one "targeted stochasticity" scenario involves Langevin systems with a symmetric stable noise. Another derives from the L\'evy-Schr\"odinger semigroup dynamics (closely linked with topologically induced super-diffusions), which has no standard Langevin representation. For computational and visualiz…

Statistics and ProbabilityPhysicsQuantum PhysicsStationary distributionStatistical Mechanics (cond-mat.stat-mech)Stochastic processSemigroupMathematical analysisFOS: Physical sciencesCauchy distributionProbability density functionMathematical Physics (math-ph)Condensed Matter PhysicsLangevin equationLévy flightQuantum Physics (quant-ph)Representation (mathematics)Mathematical PhysicsCondensed Matter - Statistical Mechanics
researchProduct

Spin-Based Quantum Information Processing in Magnetic Quantum Dots

2005

We define the qubit as a pair of singlet and triplet states of two electrons in a He-type quantum dot (QD) placed in a diluted magnetic semiconductor (DMS) medium. The molecular field is here essential as it removes the degeneracy of the triplet state and strongly enhances the Zeeman splitting. Methods of qubit rotation as well as two-qubit operations are suggested. The system of a QD in a DMS is described in a way which allows an analysis of the decoherence due to spin waves in the DMS subsystem.

Statistics and ProbabilityPhysicsStatistical and Nonlinear PhysicsQuantum PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall EffectPhase qubitCondensed Matter::Materials ScienceQuantum dotQuantum mechanicsQubitSinglet stateTriplet stateQuantum informationQuantum dissipationMathematical PhysicsSpin-½Open Systems & Information Dynamics
researchProduct

Non-self-adjoint Hamiltonians with complex eigenvalues

2016

Motivated by what one observes dealing with PT-symmetric quantum mechanics, we discuss what happens if a physical system is driven by a diagonalizable Hamiltonian with not all real eigenvalues. In particular, we consider the functional structure related to systems living in finite-dimensional Hilbert spaces, and we show that certain intertwining relations can be deduced also in this case if we introduce suitable antilinear operators. We also analyze a simple model, computing the transition probabilities in the broken and in the unbroken regime.

Statistics and ProbabilityPure mathematicsDiagonalizable matrixPhysical systemFOS: Physical sciencesGeneral Physics and Astronomyintertwining relation01 natural sciencesModeling and simulationPhysics and Astronomy (all)symbols.namesakePT-quantum mechanic0103 physical sciencesMathematical Physic010306 general physicsSettore MAT/07 - Fisica Matematicaantilinear operatorMathematical PhysicsEigenvalues and eigenvectorsMathematicsQuantum Physics010308 nuclear & particles physicsHilbert spaceStatistical and Nonlinear PhysicsProbability and statisticsMathematical Physics (math-ph)Modeling and SimulationsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Self-adjoint operatorStatistical and Nonlinear PhysicJournal of Physics A: Mathematical and Theoretical
researchProduct

Gibbs states defined by biorthogonal sequences

2016

Motivated by the growing interest on PT-quantum mechanics, in this paper we discuss some facts on generalized Gibbs states and on their related KMS-like conditions. To achieve this, we first consider some useful connections between similar (Hamiltonian) operators and we propose some extended version of the Heisenberg algebraic dynamics, deducing some of their properties, useful for our purposes.

Statistics and ProbabilityPure mathematicsGibbs stateGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesPhysics and Astronomy (all)symbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciencesnon-Hermitian HamiltonianMathematical PhysicBiorthogonal sets of vectorAlgebraic number010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsQuantum Physics010308 nuclear & particles physicsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Modeling and SimulationBiorthogonal systemsymbolsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Statistical and Nonlinear Physic
researchProduct

Partial inner product spaces, metric operators and generalized hermiticity

2013

Motivated by the recent developments of pseudo-hermitian quantum mechanics, we analyze the structure of unbounded metric operators in a Hilbert space. It turns out that such operators generate a canonical lattice of Hilbert spaces, that is, the simplest case of a partial inner product space (PIP space). Next, we introduce several generalizations of the notion of similarity between operators and explore to what extend they preserve spectral properties. Then we apply some of the previous results to operators on a particular PIP space, namely, a scale of Hilbert spaces generated by a metric operator. Finally, we reformulate the notion of pseudo-hermitian operators in the preceding formalism.

Statistics and ProbabilityPure mathematicsQuantum PhysicsSpectral propertiesHilbert spaceFOS: Physical sciencesGeneral Physics and Astronomymetric operatorStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Formalism (philosophy of mathematics)symbols.namesakeInner product spaceOperator (computer programming)pip-spacesSettore MAT/05 - Analisi MatematicaModeling and SimulationLattice (order)symbolsgeneralized hermiticityQuantum Physics (quant-ph)Mathematical PhysicsMathematics
researchProduct

Discord of response

2014

The presence of quantum correlations in a quantum state is related to the state response to local unitary perturbations. Such response is quantified by the distance between the unperturbed and perturbed states, minimized with respect to suitably identified sets of local unitary operations. In order to be a bona fide measure of quantum correlations, the distance function must be chosen among those that are contractive under completely positive and trace preserving maps. The most relevant instances of such physically well behaved metrics include the trace, the Bures, and the Hellinger distance. To each of these metrics one can associate the corresponding discord of response, namely the trace,…

Statistics and ProbabilityPure mathematicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)quantum discordGeneral Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear PhysicsState (functional analysis)16. Peace & justiceUnitary stateMeasure (mathematics)Quantum technologyQuantum stateModeling and SimulationQuantum informationHellinger distanceQuantum Physics (quant-ph)QuantumMathematical PhysicsCondensed Matter - Statistical MechanicsMathematics
researchProduct

Hamiltonians defined by biorthogonal sets

2017

In some recent papers, the studies on biorthogonal Riesz bases has found a renewed motivation because of their connection with pseudo-hermitian Quantum Mechanics, which deals with physical systems described by Hamiltonians which are not self-adjoint but still may have real point spectra. Also, their eigenvectors may form Riesz, not necessarily orthonormal, bases for the Hilbert space in which the model is defined. Those Riesz bases allow a decomposition of the Hamiltonian, as already discussed is some previous papers. However, in many physical models, one has to deal not with o.n. bases or with Riesz bases, but just with biorthogonal sets. Here, we consider the more general concept of $\mat…

Statistics and ProbabilityPure mathematicsReal pointbiorthogonal setquasi-basesMathematics::Classical Analysis and ODEsPhysical systemFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencessymbols.namesake0103 physical sciencesOrthonormal basis0101 mathematics010306 general physicsMathematical PhysicsEigenvalues and eigenvectorsMathematicsQuantum PhysicsMathematics::Functional Analysis010102 general mathematicsHilbert spaceStatistical and Nonlinear PhysicsMathematical Physics (math-ph)pseudo-Hermitian HamiltonianModeling and SimulationBiorthogonal systemsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)
researchProduct

Electron Fabry-Perot interferometer with two entangled magnetic impurities

2007

We consider a one-dimensional (1D) wire along which single conduction electrons can propagate in the presence of two spin-1/2 magnetic impurities. The electron may be scattered by each impurity via a contact-exchange interaction and thus a spin-flip generally occurs at each scattering event. Adopting a quantum waveguide theory approach, we derive the stationary states of the system at all orders in the electron-impurity exchange coupling constant. This allows us to investigate electron transmission for arbitrary initial states of the two impurity spins. We show that for suitable electron wave vectors, the triplet and singlet maximally entangled spin states of the impurities can respectively…

Statistics and ProbabilityQUANTUM WIRESQuantum decoherenceSpin statesFOS: Physical sciencesGeneral Physics and AstronomyElectron01 natural sciences010305 fluids & plasmasMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesSCATTERINGSinglet state010306 general physicsMathematical PhysicsPhysicsCoupling constantINTERFERENCEQuantum PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringStatistical and Nonlinear Physics3. Good healthModeling and SimulationCondensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)Electron scatteringStationary state
researchProduct