Search results for "Quantum physic"
showing 10 items of 1596 documents
Multiparameter quantum critical metrology
2022
Single parameter estimation is known to benefit from extreme sensitivity to parameter changes in quantum critical systems. However, the simultaneous estimation of multiple parameters is generally limited due to the incompatibility arising from the quantum nature of the underlying system. A key question is whether quantum criticality may also play a positive role in reducing the incompatibility in the simultaneous estimation of multiple parameters. We argue that this is generally the case and verify this prediction in paradigmatic quantum many-body systems close to first and second order phase transitions. The antiferromagnetic and ferromagnetic 1-D Ising chain with both transverse and longi…
On the discreet spectrum of fractional quantum hydrogen atom in two dimensions
2019
We consider a fractional generalization of two-dimensional (2D) quantum-mechanical Kepler problem corresponding to 2D hydrogen atom. Our main finding is that the solution for discreet spectrum exists only for $\mu>1$ (more specifically $1 < \mu \leq 2$, where $\mu=2$ corresponds to "ordinary" 2D hydrogenic problem), where $\mu$ is the L\'evy index. We show also that in fractional 2D hydrogen atom, the orbital momentum degeneracy is lifted so that its energy starts to depend not only on principal quantum number $n$ but also on orbital $m$. To solve the spectral problem, we pass to the momentum representation, where we apply the variational method. This permits to obtain approximate analytica…
Characterizing and Quantifying Frustration in Quantum Many-Body Systems
2011
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identifi…
Can future observation of the living partner post-tag the past decayed state in entangled neutral K mesons?
2019
Entangled neutral K mesons allow for the study of their correlated dynamics at interference and decoherence times not accessible in any other system. We find novel quantum phenomena associated to a correlation in time between the two partners: The past state of the first decayed kaon, when it was entangled before its decay, is post-tagged by the result and the time of the future observation of the second decay channel. This surprising "from future to past"effect is fully observable and leads to the unique experimental tag of the KS state, an unsolved problem since the discovery of CP violation.
Balance equations-based properties of the Rabi Hamiltonian
2014
A stationary physical system satisfies peculiar balance conditions involving mean values of appropriate observables. In this paper we show how to deduce such quantitative links, named balance equations, demonstrating as well their usefulness in bringing to light physical properties of the system without solving the Schrodinger equation. The knowledge of such properties in the case of Rabi Hamiltonian is exploit to provide arguments to make easier the variational engineering of the ground state of this model.
On the local mode behaviour of the XH2/XD2 and XD/XH fragments with respect to the deuterated species of the near local mode XH3(C3v ) molecule
2009
International audience; Effect of isotopic substitution in the near local mode, XH3(C3v), molecules is considered. On that basis it is shown that the spectroscopic properties of deuterated and/or di-deuterated isotopic species of the XH3(C3v) molecule with the value of interbond angle close to π/2 are analogous to the spectroscopic properties of its separate fragments: of a three-atomic local mode 'molecule' XH2/XD2 and of a diatomic XD/XH 'molecule'. The phosphine molecule is considered as an illustration.
Topological Protection and Control of Quantum Markovianity
2020
This article belongs to the Special Issue Topological Photonics.
All-Possible-Couplings Approach to Measuring Probabilistic Context.
2013
From behavioral sciences to biology to quantum mechanics, one encounters situations where (i) a system outputs several random variables in response to several inputs, (ii) for each of these responses only some of the inputs may "directly" influence them, but (iii) other inputs provide a "context" for this response by influencing its probabilistic relations to other responses. These contextual influences are very different, say, in classical kinetic theory and in the entanglement paradigm of quantum mechanics, which are traditionally interpreted as representing different forms of physical determinism. One can mathematically construct systems with other types of contextuality, whether or not …
Rhombi-chain Bose-Hubbard model: Geometric frustration and interactions
2018
We explore the effects of geometric frustration within a one-dimensional Bose-Hubbard model using a chain of rhombi subject to a magnetic flux. The competition of tunnelling, self-interaction and magnetic flux gives rise to the emergence of a pair-superfluid (pair-Luttinger liquid) phase besides the more conventional Mott-insulator and superfluid (Luttinger liquid) phases. We compute the complete phase diagram of the model by identifying characteristic properties of the pair-Luttinger liquid phase such as pair correlation functions and structure factors and find that the pair-Luttinger liquid phase is very sensitive to changes away from perfect frustration (half-flux). We provide some propo…
Robustness of asymmetry and coherence of quantum states
2016
Quantum states may exhibit asymmetry with respect to the action of a given group. Such an asymmetry of states can be considered as a resource in applications such as quantum metrology, and it is a concept that encompasses quantum coherence as a special case. We introduce explicitly and study the robustness of asymmetry, a quantifier of asymmetry of states that we prove to have many attractive properties, including efficient numerical computability via semidefinite programming, and an operational interpretation in a channel discrimination context. We also introduce the notion of asymmetry witnesses, whose measurement in a laboratory detects the presence of asymmetry. We prove that properly c…