Search results for "Quantum physic"

showing 10 items of 1596 documents

Landau-Zener problem in a three-level neutrino system with non-linear time dependence

2006

We consider the level-crossing problem in a three-level system with non-linearly time-varying Hamiltonian (time-dependence $t^{-3}$). We study the validity of the so-called independent crossing approximation in the Landau-Zener model by making comparison with results obtained numerically in density matrix approach. We also demonstrate the failure of the so-called "nearest zero" approximation of the Landau-Zener level-crossing probability integral.

Density matrixPhysicsQuantum PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsAstrophysics (astro-ph)FOS: Physical sciencesAstrophysicsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesThree levelHigh Energy Physics - PhenomenologyNonlinear systemsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanics0103 physical sciencessymbolsZener diodeNeutrino010306 general physicsLandau–Zener formulaHamiltonian (quantum mechanics)Quantum Physics (quant-ph)
researchProduct

Evolution of a Non-Hermitian Quantum Single-Molecule Junction at Constant Temperature

2021

This work concerns the theoretical description of the quantum dynamics of molecular junctions with thermal fluctuations and probability losses. To this end, we propose a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments. Along the lines discussed in [A. Sergi et al., Symmetry 10 518 (2018)], we adopt the operator-valued Wigner formulation of quantum mechanics (wherein the density matrix depends on the points of the Wigner phase space associated to the system) and derive a non-linear equation of motion. Moreover, we introduce a model for a non-Hermitian quantum single-molecule junction (nHQSMJ). In this model the leads are mapped to a tunneling…

Density matrixQuantum dynamicsmolecular junction; non-Hermitian quantum mechanics; open quantum system dynamics; quantum thermodynamics; Quantum Physics; Quantum Physics; 80M99 81-08 81-10 81P99General Physics and AstronomyFOS: Physical scienceslcsh:Astrophysics02 engineering and technology01 natural sciencesArticle81-1003.67.PpQuantum stateQuantum mechanicslcsh:QB460-4660103 physical sciences80M9931.15.xglcsh:Science010306 general physicsQuantum thermodynamicsQuantumnon-Hermitian quantum mechanicsQuantum tunnelling05.30.-dPhysicsQuantum PhysicsOperator (physics)80M99 81-08 81-10 81P9981-08021001 nanoscience & nanotechnologyopen quantum system dynamicslcsh:QC1-99981P99Phase space05.60.Ggquantum thermodynamicslcsh:Q0210 nano-technologyQuantum Physics (quant-ph)molecular junctionlcsh:Physics02.60.Cb
researchProduct

Continuous-Variable Tomography of Solitary Electrons

2019

A method for characterising the wave-function of freely-propagating particles would provide a useful tool for developing quantum-information technologies with single electronic excitations. Previous continuous-variable quantum tomography techniques developed to analyse electronic excitations in the energy-time domain have been limited to energies close to the Fermi level. We show that a wide-band tomography of single-particle distributions is possible using energy-time filtering and that the Wigner representation of the mixed-state density matrix can be reconstructed for solitary electrons emitted by an on-demand single-electron source. These are highly localised distributions, isolated fro…

Density matrixSciencePhysics::Medical PhysicsComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyQuantum entanglementElectron/639/925/92701 natural sciencesGeneral Biochemistry Genetics and Molecular Biology5108 Quantum Physics510symbols.namesake5102 Atomic Molecular and Optical PhysicsElectronic and spintronic devices0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Wigner distribution function010306 general physicslcsh:Science/639/766/1130/2798/639/925/357/1017PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum dotsFermi levelQarticleGeneral ChemistryQuantum tomography021001 nanoscience & nanotechnologyComputational physicsNanoscale devicessymbolslcsh:Q0210 nano-technology51 Physical SciencesCoherence (physics)Fermi Gamma-ray Space Telescope
researchProduct

Adiabatic Elimination and Sub-space Evolution of Open Quantum Systems

2020

Efficient descriptions of open quantum systems can be obtained by performing an adiabatic elimination of the fast degrees of freedom and formulating effective operators for the slow degrees of freedom in reduced dimensions. Here, we perform the construction of effective operators in frequency space, and using the final value theorem or alternatively the Keldysh theorem, we provide a correction for the trace of the density matrix which takes into account the non trace-preserving character of the evolution. We illustrate our results with two different systems, ones where the eliminated fast subspace is constituted by a continuous set of states and ones with discrete states. Furthermore, we sh…

Density matrixTrace (linear algebra)Atomic Physics (physics.atom-ph)PopulationDegrees of freedom (statistics)FOS: Physical sciences01 natural sciences010305 fluids & plasmasPhysics - Atomic Physics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Physics - Chemical Physics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Statistical physics010306 general physicsAdiabatic processeducationComputingMilieux_MISCELLANEOUSPhysicsChemical Physics (physics.chem-ph)education.field_of_studyQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsDetailed balanceFinal value theorem[SDU]Sciences of the Universe [physics]Quantum Physics (quant-ph)Subspace topology
researchProduct

Role of ambient light in the detection of contrast elements in digital dental radiography.

2018

Objective This study aimed to evaluate the effect of different ambient light levels on observer detection of small contrast differences in a contrast phantom by using a high-end liquid crystal display (LCD) monitor. Study Design An aluminum step wedge was converted into a contrast phantom by the addition of bore holes. Radiographic images of the contrast elements were presented to 20 observers. Images were displayed in random order under different ambient light levels (0, 50, 200, and 500 lux) twice, and the observers had to determine if contrast elements were visible. Sensitivity and specificity were determined to calculate areas under receiver operating characteristic curves and Friedmann…

Dental radiographyObserver (quantum physics)Lightmedia_common.quotation_subjectRadiographySensitivity and SpecificityImaging phantom030218 nuclear medicine & medical imagingPathology and Forensic Medicinelaw.invention03 medical and health sciences0302 clinical medicineOpticslawmedicineContrast (vision)HumansRadiology Nuclear Medicine and imagingDentistry (miscellaneous)media_commonObserver VariationLiquid-crystal displaymedicine.diagnostic_testReceiver operating characteristicbusiness.industryPhantoms Imaging030206 dentistryRadiography Dental DigitalLiquid CrystalsData DisplaySurgeryOral SurgerybusinessSensitivity (electronics)Oral surgery, oral medicine, oral pathology and oral radiology
researchProduct

Entanglement dynamics of two independent cavity-embedded quantum dots

2010

We investigate the dynamical behavior of entanglement in a system made by two solid-state emitters, as two quantum dots, embedded in two separated micro-cavities. In these solid-state systems, in addition to the coupling with the cavity mode, the emitter is coupled to a continuum of leaky modes providing additional losses and it is also subject to a phonon-induced pure dephasing mechanism. We model this physical configuration as a multipartite system composed by two independent parts each containing a qubit embedded in a single-mode cavity, exposed to cavity losses, spontaneous emission and pure dephasing. We study the time evolution of entanglement of this multipartite open system finally …

DephasingFOS: Physical sciencesQuantum entanglementOpen system (systems theory)Settore FIS/03 - Fisica Della MateriaOpen quantum systemsAtomic and Molecular PhysicsQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spontaneous emissionMathematical PhysicsPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsTime evolutionCondensed Matter PhysicsAtomic and Molecular Physics and Optics; Mathematical Physics; Condensed Matter PhysicsAtomic and Molecular Physics and OpticsMultipartite68.65.Hb Quantum dots (patterned in quantum wells)Quantum dotQubitPhysics::Accelerator Physicsand OpticsQuantum Physics (quant-ph)68.65.Hb Quantum dots (patterned in quantum wells); Open quantum systems
researchProduct

Analytical solution for multisingular vortex Gaussian beams: The mathematical theory of scattering modes

2016

We present a novel procedure to solve the Schr\"odinger equation, which in optics is the paraxial wave equation, with an initial multisingular vortex Gaussian beam. This initial condition has a number of singularities in a plane transversal to propagation embedded in a Gaussian beam. We use the scattering modes, which are solutions of the paraxial wave equation that can be combined straightforwardly to express the initial condition and therefore permit to solve the problem. To construct the scattering modes one needs to obtain a particular set of polynomials, which play an analogous role than Laguerre polynomials for Laguerre-Gaussian modes. We demonstrate here the recurrence relations need…

DiffractionGaussianFOS: Physical sciences01 natural sciencesSchrödinger equation010309 opticssymbols.namesakeOptics0103 physical sciencesInitial value problem010306 general physicsMathematical PhysicsPhysicsQuantum Physicsbusiness.industryMathematical analysisMathematical Physics (math-ph)Atomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsVortexQuantum Gases (cond-mat.quant-gas)symbolsLaguerre polynomialsCondensed Matter - Quantum GasesbusinessQuantum Physics (quant-ph)Fresnel diffractionPhysics - OpticsGaussian beamOptics (physics.optics)
researchProduct

Toward computability of trace distance discord

2014

It is known that a reliable geometric quantifier of discord-like correlations can be built by employing the so-called trace distance. This is used to measure how far the state under investigation is from the closest "classical-quantum" one. To date, the explicit calculation of this indicator for two qubits was accomplished only for states such that the reduced density matrix of the measured party is maximally mixed, a class that includes Bell-diagonal states. Here, we first reduce the required optimization for a general two-qubit state to the minimization of an explicit two-variable function. Using this framework, we show next that the minimum can be analytically worked out in a number of r…

Discrete mathematicsDYNAMICSBell-diagonal statesquantum statesQuantum Physicse trace distance discordComputabilityPhysicsGeneral Physics and AstronomyFOS: Physical sciencesClass (philosophy)Function (mathematics)State (functional analysis)Expression (computer science)Measure (mathematics)X-STATESX-STATES; QUANTUM; ENTANGLEMENT; DYNAMICSQubitquantum information quantum correlationsTrace distanceQuantum Physics (quant-ph)QUANTUMENTANGLEMENTtrace distanceMathematics
researchProduct

Understanding Quantum Algorithms via Query Complexity

2017

Query complexity is a model of computation in which we have to compute a function $f(x_1, \ldots, x_N)$ of variables $x_i$ which can be accessed via queries. The complexity of an algorithm is measured by the number of queries that it makes. Query complexity is widely used for studying quantum algorithms, for two reasons. First, it includes many of the known quantum algorithms (including Grover's quantum search and a key subroutine of Shor's factoring algorithm). Second, one can prove lower bounds on the query complexity, bounding the possible quantum advantage. In the last few years, there have been major advances on several longstanding problems in the query complexity. In this talk, we su…

Discrete mathematicsFOS: Computer and information sciencesQuantum PhysicsComputer scienceModel of computationSubroutineComputer Science::Information RetrievalFOS: Physical sciencesFunction (mathematics)Computational Complexity (cs.CC)Symmetric functionComputer Science - Computational ComplexityBounding overwatchPartial functionKey (cryptography)Quantum algorithmQuantum Physics (quant-ph)Computer Science::Databases
researchProduct

On Physical Problems that are Slightly More Difficult than QMA

2013

We study the complexity of computational problems from quantum physics. Typically, they are studied using the complexity class QMA (quantum counterpart of NP) but some natural computational problems appear to be slightly harder than QMA. We introduce new complexity classes consisting of problems that are solvable with a small number of queries to a QMA oracle and use these complexity classes to quantify the complexity of several natural computational problems (for example, the complexity of estimating the spectral gap of a Hamiltonian).

Discrete mathematicsFOS: Computer and information sciencesQuantum PhysicsTheoretical computer scienceCompleteNP-easyFOS: Physical sciences0102 computer and information sciencesComputer Science::Computational ComplexityComputational Complexity (cs.CC)01 natural sciencesPHStructural complexity theoryComputer Science - Computational Complexity010201 computation theory & mathematics0103 physical sciencesAsymptotic computational complexityComplexity classF.1.2Low010306 general physicsQuantum Physics (quant-ph)Quantum complexity theoryMathematics2014 IEEE 29th Conference on Computational Complexity (CCC)
researchProduct