6533b85cfe1ef96bd12bcb02

RESEARCH PRODUCT

Continuous-Variable Tomography of Solitary Electrons

Ian FarrerIan FarrerElina LocaneMasaya KataokaPatrick SeeJ. GriffithsJ. D. FletcherN. JohnsonN. JohnsonN. JohnsonDavid A. RitchieVyacheslavs KashcheyevsPiet W. Brouwer

subject

Density matrixSciencePhysics::Medical PhysicsComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyQuantum entanglementElectron/639/925/92701 natural sciencesGeneral Biochemistry Genetics and Molecular Biology5108 Quantum Physics510symbols.namesake5102 Atomic Molecular and Optical PhysicsElectronic and spintronic devices0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Wigner distribution function010306 general physicslcsh:Science/639/766/1130/2798/639/925/357/1017PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum dotsFermi levelQarticleGeneral ChemistryQuantum tomography021001 nanoscience & nanotechnologyComputational physicsNanoscale devicessymbolslcsh:Q0210 nano-technology51 Physical SciencesCoherence (physics)Fermi Gamma-ray Space Telescope

description

A method for characterising the wave-function of freely-propagating particles would provide a useful tool for developing quantum-information technologies with single electronic excitations. Previous continuous-variable quantum tomography techniques developed to analyse electronic excitations in the energy-time domain have been limited to energies close to the Fermi level. We show that a wide-band tomography of single-particle distributions is possible using energy-time filtering and that the Wigner representation of the mixed-state density matrix can be reconstructed for solitary electrons emitted by an on-demand single-electron source. These are highly localised distributions, isolated from the Fermi sea. While we cannot resolve the pure state Wigner function of our excitations due to classical fluctuations, we can partially resolve the chirp and squeezing of the Wigner function imposed by emission conditions and quantify the quantumness of the source. This tomography scheme, when implemented with sufficient experimental resolution, will enable quantum-limited measurements, providing information on electron coherence and entanglement at the individual particle level.

https://dx.doi.org/10.48550/arxiv.1901.10985