0000000000763050

AUTHOR

Elina Locane

Time-energy filtering of single electrons in ballistic waveguides

Characterizing distinct electron wave packets is a basic task for solid-state electron quantum optics with applications in quantum metrology and sensing. A important circuit element for this task is a non-stationary potential barrier than enables backscattering of chiral particles depending on their energy and time of arrival. Here we solve the quantum mechanical problem of single-particle scattering by a ballistic constriction in an fully depleted quantum Hall system under spatially uniform but time-dependent electrostatic potential modulation. The result describes electrons distributed in time-energy space according to a modified Wigner quasiprobability distribution and scattered with an …

research product

Continuous-Variable Tomography of Solitary Electrons

A method for characterising the wave-function of freely-propagating particles would provide a useful tool for developing quantum-information technologies with single electronic excitations. Previous continuous-variable quantum tomography techniques developed to analyse electronic excitations in the energy-time domain have been limited to energies close to the Fermi level. We show that a wide-band tomography of single-particle distributions is possible using energy-time filtering and that the Wigner representation of the mixed-state density matrix can be reconstructed for solitary electrons emitted by an on-demand single-electron source. These are highly localised distributions, isolated fro…

research product