0000000000967826

AUTHOR

David A. Ritchie

Resonant Rayleigh scattering by confined two-dimensional excitonic states

A systematic study of resonant Rayleigh scattering in semiconductor single quantum wells has been carried out. The dependence of the scattering efficiency on the well width and the temperature has been investigated. The behaviour observed in the resonant Rayleigh spectra can be explained in terms of the confinement of the excitonic states in the plane of the well due to fluctuations in the well width. A microscopic theoretical model for the elastic scattering of light by weakly confined two-dimensional excitonic states has been developed. The Rayleigh scattering efficiency has been calculated to the lowest-order of perturbation theory and the results found to be in good agreement with the e…

research product

Continuous-Variable Tomography of Solitary Electrons

A method for characterising the wave-function of freely-propagating particles would provide a useful tool for developing quantum-information technologies with single electronic excitations. Previous continuous-variable quantum tomography techniques developed to analyse electronic excitations in the energy-time domain have been limited to energies close to the Fermi level. We show that a wide-band tomography of single-particle distributions is possible using energy-time filtering and that the Wigner representation of the mixed-state density matrix can be reconstructed for solitary electrons emitted by an on-demand single-electron source. These are highly localised distributions, isolated fro…

research product

Measurement and control of electron wave packets from a single-electron source

We report an experimental technique to measure and manipulate the arrival-time and energy distributions of electrons emitted from a semiconductor electron pump, operated as both a single-electron source and a two-electron source. Using an energy-selective detector whose transmission we control on picosecond time scales, we can measure directly the electron arrival-time distribution and we determine the upper bound to the distribution width to be 30 ps. We study the effects of modifying the shape of the voltage wave form that drives the electron pump, and show that our results can be explained by a tunneling model of the emission mechanism. This information was in turn used to control the em…

research product