Search results for "Quantum physic"
showing 10 items of 1596 documents
Polynomial method to study the entanglement of pure N-qubit states
2009
We present a mapping which associates pure N-qubit states with a polynomial. The roots of the polynomial characterize the state completely. Using the properties of the polynomial we construct a way to determine the separability and the number of unentangled qubits of pure N-qubit states.
Scalable Ellipsoidal Classification for Bipartite Quantum States
2008
The Separability Problem is approached from the perspective of Ellipsoidal Classification. A Density Operator of dimension N can be represented as a vector in a real vector space of dimension $N^{2}- 1$, whose components are the projections of the matrix onto some selected basis. We suggest a method to test separability, based on successive optimization programs. First, we find the Minimum Volume Covering Ellipsoid that encloses a particular set of properly vectorized bipartite separable states, and then we compute the Euclidean distance of an arbitrary vectorized bipartite Density Operator to this ellipsoid. If the vectorized Density Operator falls inside the ellipsoid, it is regarded as s…
Quantum walks on two-dimensional grids with multiple marked locations
2015
The running time of a quantum walk search algorithm depends on both the structure of the search space (graph) and the configuration (the placement and the number) of marked locations. While the first dependence has been studied in a number of papers, the second dependence remains mostly unstudied.We study search by quantum walks on the two-dimensional grid using the algorithm of Ambainis, Kempe and Rivosh [3]. The original paper analyses one and two marked locations only. We move beyond two marked locations and study the behaviour of the algorithm for several configurations of multiple marked locations.In this paper, we prove two results showing the importance of how the marked locations ar…
Improved constructions of quantum automata
2008
We present a simple construction of quantum automata which achieve an exponential advantage over classical finite automata. Our automata use \frac{4}{\epsilon} \log 2p + O(1) states to recognize a language that requires p states classically. The construction is both substantially simpler and achieves a better constant in the front of \log p than the previously known construction of Ambainis and Freivalds (quant-ph/9802062). Similarly to Ambainis and Freivalds, our construction is by a probabilistic argument. We consider the possibility to derandomize it and present some results in this direction.
Spatial Search on Grids with Minimum Memory
2015
We study quantum algorithms for spatial search on finite dimensional grids. Patel et al. and Falk have proposed algorithms based on a quantum walk without a coin, with different operators applied at even and odd steps. Until now, such algorithms have been studied only using numerical simulations. In this paper, we present the first rigorous analysis for an algorithm of this type, showing that the optimal number of steps is $O(\sqrt{N\log N})$ and the success probability is $O(1/\log N)$, where $N$ is the number of vertices. This matches the performance achieved by algorithms that use other forms of quantum walks.
Symmetry-assisted adversaries for quantum state generation
2011
We introduce a new quantum adversary method to prove lower bounds on the query complexity of the quantum state generation problem. This problem encompasses both, the computation of partial or total functions and the preparation of target quantum states. There has been hope for quite some time that quantum state generation might be a route to tackle the $backslash$sc Graph Isomorphism problem. We show that for the related problem of $backslash$sc Index Erasure our method leads to a lower bound of $backslash Omega(backslash sqrt N)$ which matches an upper bound obtained via reduction to quantum search on $N$ elements. This closes an open problem first raised by Shi [FOCS'02]. Our approach is …
Exceptional Quantum Walk Search on the Cycle
2016
Quantum walks are standard tools for searching graphs for marked vertices, and they often yield quadratic speedups over a classical random walk's hitting time. In some exceptional cases, however, the system only evolves by sign flips, staying in a uniform probability distribution for all time. We prove that the one-dimensional periodic lattice or cycle with any arrangement of marked vertices is such an exceptional configuration. Using this discovery, we construct a search problem where the quantum walk's random sampling yields an arbitrary speedup in query complexity over the classical random walk's hitting time. In this context, however, the mixing time to prepare the initial uniform state…
Nonmalleable encryption of quantum information
2008
We introduce the notion of "non-malleability" of a quantum state encryption scheme (in dimension d): in addition to the requirement that an adversary cannot learn information about the state, here we demand that no controlled modification of the encrypted state can be effected. We show that such a scheme is equivalent to a "unitary 2-design" [Dankert et al.], as opposed to normal encryption which is a unitary 1-design. Our other main results include a new proof of the lower bound of (d^2-1)^2+1 on the number of unitaries in a 2-design [Gross et al.], which lends itself to a generalization to approximate 2-design. Furthermore, while in prime power dimension there is a unitary 2-design with =…
Measuring Public Speaking Anxiety: Self-report, behavioral, and physiological
2021
Self-reports are typically used to assess public speaking anxiety. In this study, we examined whether self-report, observer report, and behavioral and physiological reactivity were associated with each other during a speech challenge task. A total of 95 university students completed a self-report measure of public speaking anxiety before and after the speech challenge. Speech duration (i.e., behavioral measure), physiological reactivity, as well as speech performance evaluated by the participants and observers were also recorded. The results suggest that self-reported public speaking anxiety predicts speech duration, as well as speech quality, as rated by the participants themselves and ob…
Dynamical decoupling efficiency versus quantum non-Markovianity
2015
We investigate the relationship between non-Markovianity and the effectiveness of a dynamical decoupling protocol for qubits undergoing pure dephasing. We consider an exact model in which dephasing arises due to a bosonic environment with a spectral density of the Ohmic class. This is parametrised by an Ohmicity parameter by changing which we can model both Markovian and non-Markovian environments. Interestingly, we find that engineering a non-Markovian environment is detrimental to the efficiency of the dynamical decoupling scheme, leading to a worse coherence preservation. We show that each dynamical decoupling pulse reverses the flow of quantum information and, on this basis, we investig…