Search results for "Quantum physic"

showing 10 items of 1596 documents

Neural Teleportation

2023

In this paper, we explore a process called neural teleportation, a mathematical consequence of applying quiver representation theory to neural networks. Neural teleportation "teleports" a network to a new position in the weight space and preserves its function. This phenomenon comes directly from the definitions of representation theory applied to neural networks and it turns out to be a very simple operation that has remarkable properties. We shed light on surprising and counter-intuitive consequences neural teleportation has on the loss landscape. In particular, we show that teleportation can be used to explore loss level curves, that it changes the local loss landscape, sharpens global m…

FOS: Computer and information sciencesComputer Science - Machine LearningGeneral MathematicsComputer Science (miscellaneous)Computer Science - Neural and Evolutionary ComputingQuantum PhysicsNeural and Evolutionary Computing (cs.NE)Engineering (miscellaneous)quiver representations; neural networks; teleportationMachine Learning (cs.LG)
researchProduct

On the Complexity of Solving Subtraction Games

2018

We study algorithms for solving Subtraction games, which sometimes are referred to as one-heap Nim games. We describe a quantum algorithm which is applicable to any game on DAG, and show that its query compexity for solving an arbitrary Subtraction game of $n$ stones is $O(n^{3/2}\log n)$. The best known deterministic algorithms for solving such games are based on the dynamic programming approach. We show that this approach is asymptotically optimal and that classical query complexity for solving a Subtraction game is generally $\Theta(n^2)$. This paper perhaps is the first explicit "quantum" contribution to algorithmic game theory.

FOS: Computer and information sciencesComputer Science::Computer Science and Game TheoryQuantum PhysicsComputer Science - Computational ComplexityComputer Science - Computer Science and Game TheoryComputer Science - Data Structures and AlgorithmsComputingMilieux_PERSONALCOMPUTINGFOS: Physical sciencesData Structures and Algorithms (cs.DS)Computational Complexity (cs.CC)Quantum Physics (quant-ph)Computer Science and Game Theory (cs.GT)
researchProduct

Quantum autoencoders via quantum adders with genetic algorithms

2017

The quantum autoencoder is a recent paradigm in the field of quantum machine learning, which may enable an enhanced use of resources in quantum technologies. To this end, quantum neural networks with less nodes in the inner than in the outer layers were considered. Here, we propose a useful connection between quantum autoencoders and quantum adders, which approximately add two unknown quantum states supported in different quantum systems. Specifically, this link allows us to employ optimized approximate quantum adders, obtained with genetic algorithms, for the implementation of quantum autoencoders for a variety of initial states. Furthermore, we can also directly optimize the quantum autoe…

FOS: Computer and information sciencesComputer Science::Machine Learning0301 basic medicineComputer Science - Machine LearningAdderPhysics and Astronomy (miscellaneous)Quantum machine learningField (physics)Computer scienceMaterials Science (miscellaneous)Computer Science::Neural and Evolutionary ComputationFOS: Physical sciencesData_CODINGANDINFORMATIONTHEORYTopology01 natural sciencesMachine Learning (cs.LG)Statistics::Machine Learning03 medical and health sciencesQuantum state0103 physical sciencesNeural and Evolutionary Computing (cs.NE)Electrical and Electronic Engineering010306 general physicsQuantumQuantum PhysicsArtificial neural networkComputer Science - Neural and Evolutionary ComputingTheoryofComputation_GENERALAutoencoderAtomic and Molecular Physics and OpticsQuantum technology030104 developmental biologyComputerSystemsOrganization_MISCELLANEOUSQuantum Physics (quant-ph)
researchProduct

Upperbounds on the probability of finding marked connected components using quantum walks

2019

Quantum walk search may exhibit phenomena beyond the intuition from a conventional random walk theory. One of such examples is exceptional configuration phenomenon -- it appears that it may be much harder to find any of two or more marked vertices, that if only one of them is marked. In this paper, we analyze the probability of finding any of marked vertices in such scenarios and prove upper bounds for various sets of marked vertices. We apply the upper bounds to large collection of graphs and show that the quantum search may be slow even when taking real-world networks.

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)FOS: Physical sciences01 natural sciencesUpper and lower bounds010305 fluids & plasmasTheoretical Computer Science0103 physical sciencesFOS: MathematicsMathematics - CombinatoricsQuantum walkElectrical and Electronic Engineering010306 general physicsQuantum computerMathematicsDiscrete mathematicsConnected componentQuantum PhysicsStatistical and Nonlinear PhysicsRandom walkQuantum searchElectronic Optical and Magnetic MaterialsModeling and SimulationSignal ProcessingCombinatorics (math.CO)Quantum Physics (quant-ph)Stationary stateComputer Science - Discrete Mathematics
researchProduct

Optimal one-shot quantum algorithm for EQUALITY and AND

2017

We study the computation complexity of Boolean functions in the quantum black box model. In this model our task is to compute a function $f:\{0,1\}\to\{0,1\}$ on an input $x\in\{0,1\}^n$ that can be accessed by querying the black box. Quantum algorithms are inherently probabilistic; we are interested in the lowest possible probability that the algorithm outputs incorrect answer (the error probability) for a fixed number of queries. We show that the lowest possible error probability for $AND_n$ and $EQUALITY_{n+1}$ is $1/2-n/(n^2+1)$.

FOS: Computer and information sciencesDiscrete mathematicsOne shotQuantum PhysicsGeneral Computer ScienceProbabilistic logicFOS: Physical sciencesFunction (mathematics)Computational Complexity (cs.CC)Computer Science - Computational ComplexityProbability of errorComputation complexityQuantum algorithmQuantum Physics (quant-ph)Boolean functionQuantumMathematics
researchProduct

The quantum query complexity of certification

2009

We study the quantum query complexity of finding a certificate for a d-regular, k-level balanced NAND formula. Up to logarithmic factors, we show that the query complexity is Theta(d^{(k+1)/2}) for 0-certificates, and Theta(d^{k/2}) for 1-certificates. In particular, this shows that the zero-error quantum query complexity of evaluating such formulas is O(d^{(k+1)/2}) (again neglecting a logarithmic factor). Our lower bound relies on the fact that the quantum adversary method obeys a direct sum theorem.

FOS: Computer and information sciencesDiscrete mathematicsQuantum Physics0209 industrial biotechnologyNuclear and High Energy PhysicsQuantum queryComputer scienceDirect sumFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear Physics0102 computer and information sciences02 engineering and technologyCertificationComputational Complexity (cs.CC)Certificate01 natural sciencesTheoretical Computer ScienceComputer Science - Computational Complexity020901 industrial engineering & automationComputational Theory and Mathematics010201 computation theory & mathematicsQuantum Physics (quant-ph)QuantumMathematical PhysicsQuantum Information and Computation
researchProduct

On the Power of Non-adaptive Learning Graphs

2012

We introduce a notion of the quantum query complexity of a certificate structure. This is a formalisation of a well-known observation that many quantum query algorithms only require the knowledge of the disposition of possible certificates in the input string, not the precise values therein. Next, we derive a dual formulation of the complexity of a non-adaptive learning graph, and use it to show that non-adaptive learning graphs are tight for all certificate structures. By this, we mean that there exists a function possessing the certificate structure and such that a learning graph gives an optimal quantum query algorithm for it. For a special case of certificate structures generated by cer…

FOS: Computer and information sciencesDiscrete mathematicsQuantum PhysicsTheoretical computer scienceComputational complexity theoryComputer scienceGeneral MathematicsExistential quantificationFOS: Physical sciencesGraph theoryString searching algorithmComputational Complexity (cs.CC)Query optimizationCertificateUpper and lower boundsTheoretical Computer ScienceComputational MathematicsComputer Science - Computational ComplexityComputational Theory and MathematicsBounded functionAdaptive learningSpecial caseQuantum Physics (quant-ph)Quantum computerMathematics2013 IEEE Conference on Computational Complexity
researchProduct

Adversary Lower Bound for the k-sum Problem

2013

We prove a tight quantum query lower bound $\Omega(n^{k/(k+1)})$ for the problem of deciding whether there exist $k$ numbers among $n$ that sum up to a prescribed number, provided that the alphabet size is sufficiently large. This is an extended and simplified version of an earlier preprint of one of the authors arXiv:1204.5074.

FOS: Computer and information sciencesDiscrete mathematicsQuantum queryQuantum PhysicsFOS: Physical sciencesComputational Complexity (cs.CC)AdversaryOmegaUpper and lower boundsCombinatoricsComputer Science - Computational ComplexityOrthogonal arrayAlphabetQuantum Physics (quant-ph)Computer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Parity Oblivious d-Level Random Access Codes and Class of Noncontextuality Inequalities

2016

One of the fundamental results in quantum foundations is the Kochen-Specker no-go theorem. For the quantum theory, the no-go theorem excludes the possibility of a class of hidden variable models where value attribution is context independent. Recently, the notion of contextuality has been generalized for different operational procedures and it has been shown that preparation contextuality of mixed quantum states can be a useful resource in an information-processing task called parity-oblivious multiplexing. Here, we introduce a new class of information processing tasks, namely d-level parity oblivious random access codes and obtain bounds on the success probabilities of performing such task…

FOS: Computer and information sciencesExistential quantificationComputer Science - Information TheoryFOS: Physical sciences01 natural sciences010305 fluids & plasmasTheoretical Computer ScienceQuantum state0103 physical sciencesElectrical and Electronic Engineering010306 general physicsQuantumMathematicsQuantum computerDiscrete mathematicsQuantum PhysicsInformation Theory (cs.IT)Statistical and Nonlinear PhysicsParity (physics)Electronic Optical and Magnetic MaterialsKochen–Specker theoremModeling and SimulationSignal ProcessingOnticQuantum Physics (quant-ph)Random access
researchProduct

Quantum, stochastic, and pseudo stochastic languages with few states

2014

Stochastic languages are the languages recognized by probabilistic finite automata (PFAs) with cutpoint over the field of real numbers. More general computational models over the same field such as generalized finite automata (GFAs) and quantum finite automata (QFAs) define the same class. In 1963, Rabin proved the set of stochastic languages to be uncountable presenting a single 2-state PFA over the binary alphabet recognizing uncountably many languages depending on the cutpoint. In this paper, we show the same result for unary stochastic languages. Namely, we exhibit a 2-state unary GFA, a 2-state unary QFA, and a family of 3-state unary PFAs recognizing uncountably many languages; all th…

FOS: Computer and information sciencesFINITE AUTOMATAClass (set theory)Unary operationFormal Languages and Automata Theory (cs.FL)QUANTUM FINITE AUTOMATACOMPUTATIONAL MODELBINARY ALPHABETSFOS: Physical sciencesComputer Science - Formal Languages and Automata TheoryComputer Science::Computational ComplexityPROBABILISTIC FINITE AUTOMATAREAL NUMBERUNARY LANGUAGESQuantum finite automataCUT-POINTMathematicsReal numberDiscrete mathematicsQuantum PhysicsFinite-state machineGENERALIZED FINITE AUTOMATAComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)STOCHASTIC SYSTEMSAutomatonSTOCHASTIC LANGUAGESMathematics::LogicProbabilistic automatonComputer Science::Programming LanguagesQUANTUM THEORYUncountable setQuantum Physics (quant-ph)Computer Science::Formal Languages and Automata TheoryGENERALIZED FINITE AUTOMATON
researchProduct