Search results for "Quantum physic"
showing 10 items of 1596 documents
New Developments in Quantum Algorithms
2010
In this survey, we describe two recent developments in quantum algorithms. The first new development is a quantum algorithm for evaluating a Boolean formula consisting of AND and OR gates of size N in time O(\sqrt{N}). This provides quantum speedups for any problem that can be expressed via Boolean formulas. This result can be also extended to span problems, a generalization of Boolean formulas. This provides an optimal quantum algorithm for any Boolean function in the black-box query model. The second new development is a quantum algorithm for solving systems of linear equations. In contrast with traditional algorithms that run in time O(N^{2.37...}) where N is the size of the system, the …
Quantum property testing for bounded-degree graphs
2010
We study quantum algorithms for testing bipartiteness and expansion of bounded-degree graphs. We give quantum algorithms that solve these problems in time O(N^(1/3)), beating the Omega(sqrt(N)) classical lower bound. For testing expansion, we also prove an Omega(N^(1/4)) quantum query lower bound, thus ruling out the possibility of an exponential quantum speedup. Our quantum algorithms follow from a combination of classical property testing techniques due to Goldreich and Ron, derandomization, and the quantum algorithm for element distinctness. The quantum lower bound is obtained by the polynomial method, using novel algebraic techniques and combinatorial analysis to accommodate the graph s…
The Need for Structure in Quantum Speedups
2009
Is there a general theorem that tells us when we can hope for exponential speedups from quantum algorithms, and when we cannot? In this paper, we make two advances toward such a theorem, in the black-box model where most quantum algorithms operate. First, we show that for any problem that is invariant under permuting inputs and outputs (like the collision or the element distinctness problems), the quantum query complexity is at least the 7th root of the classical randomized query complexity. (An earlier version of this paper gave the 9th root.) This resolves a conjecture of Watrous from 2002. Second, inspired by recent work of O'Donnell et al. (2005) and Dinur et al. (2006), we conjecture t…
Exact quantum query complexity of $\rm{EXACT}_{k,l}^n$
2016
In the exact quantum query model a successful algorithm must always output the correct function value. We investigate the function that is true if exactly $k$ or $l$ of the $n$ input bits given by an oracle are 1. We find an optimal algorithm (for some cases), and a nontrivial general lower and upper bound on the minimum number of queries to the black box.
Average/Worst-Case Gap of Quantum Query Complexities by On-Set Size
2009
This paper considers the query complexity of the functions in the family F_{N,M} of N-variable Boolean functions with onset size M, i.e., the number of inputs for which the function value is 1, where 1<= M <= 2^{N}/2 is assumed without loss of generality because of the symmetry of function values, 0 and 1. Our main results are as follows: (1) There is a super-linear gap between the average-case and worst-case quantum query complexities over F_{N,M} for a certain range of M. (2) There is no super-linear gap between the average-case and worst-case randomized query complexities over F_{N,M} for every M. (3) For every M bounded by a polynomial in N, any function in F_{N,M} has quantum que…
Quantum Pushdown Automata
2001
Quantum finite automata, as well as quantum pushdown automata (QPA) were first introduced by C. Moore and J. P. Crutchfield. In this paper we introduce the notion of QPA in a non-equivalent way, including unitarity criteria, by using the definition of quantum finite automata of Kondacs and Watrous. It is established that the unitarity criteria of QPA are not equivalent to the corresponding unitarity criteria of quantum Turing machines. We show that QPA can recognize every regular language. Finally we present some simple languages recognized by QPA, not recognizable by deterministic pushdown automata.
Implications of quantum automata for contextuality
2014
We construct zero-error quantum finite automata (QFAs) for promise problems which cannot be solved by bounded-error probabilistic finite automata (PFAs). Here is a summary of our results: - There is a promise problem solvable by an exact two-way QFA in exponential expected time, but not by any bounded-error sublogarithmic space probabilistic Turing machine (PTM). - There is a promise problem solvable by an exact two-way QFA in quadratic expected time, but not by any bounded-error $ o(\log \log n) $-space PTMs in polynomial expected time. The same problem can be solvable by a one-way Las Vegas (or exact two-way) QFA with quantum head in linear (expected) time. - There is a promise problem so…
Optimal Classical Random Access Codes Using Single d-level Systems
2015
Recently, in the letter [Phys. Rev. Lett. {\bf 114}, 170502 (2015)], Tavakoli et al. derived interesting results by studying classical and quantum random access codes (RACs) in which the parties communicate higher-dimensional systems. They construct quantum RACs with a bigger advantage over classical RACs compared to previously considered RACs with binary alphabet. However, these results crucially hinge upon an unproven assertion that the classical strategy "majority-encoding-identity-decoding" leads to the maximum average success probability achievable for classical RACs; in this article we provide a proof of this intuition. We characterize all optimal classical RACs and show that indeed "…
Quantum finite multitape automata
1999
Quantum finite automata were introduced by C.Moore, J.P. Crutchfield, and by A.Kondacs and J.Watrous. This notion is not a generalization of the deterministic finite automata. Moreover, it was proved that not all regular languages can be recognized by quantum finite automata. A.Ambainis and R.Freivalds proved that for some languages quantum finite automata may be exponentially more concise rather than both deterministic and probabilistic finite automata. In this paper we introduce the notion of quantum finite multitape automata and prove that there is a language recognized by a quantum finite automaton but not by a deterministic or probabilistic finite automata. This is the first result on …
Quantum strategies are better than classical in almost any XOR game
2011
We initiate a study of random instances of nonlocal games. We show that quantum strategies are better than classical for almost any 2-player XOR game. More precisely, for large n, the entangled value of a random 2-player XOR game with n questions to every player is at least 1.21... times the classical value, for 1-o(1) fraction of all 2-player XOR games.