Search results for "Qubit"

showing 10 items of 279 documents

Quantum Error Correction with magnetic molecules

2014

Quantum algorithms often assume independent spin qubits to produce trivial $|\uparrow\rangle=|0\rangle$, $|\downarrow\rangle=|1\rangle$ mappings. This can be unrealistic in many solid-state implementations with sizeable magnetic interactions. Here we show that the lower part of the spectrum of a molecule containing three exchange-coupled metal ions with $S=1/2$ and $I=1/2$ is equivalent to nine electron-nuclear qubits. We derive the relation between spin states and qubit states in reasonable parameter ranges for the rare earth $^{159}$Tb$^{3+}$ and for the transition metal Cu$^{2+}$, and study the possibility to implement Shor's Quantum Error Correction code on such a molecule. We also disc…

PhysicsQuantum PhysicsSpin statesSpectrum (functional analysis)FOS: Physical sciencesGeneral Physics and AstronomyTransition metalQuantum error correctionQuantum mechanicsQubitMoleculeQuantum algorithmQuantum Physics (quant-ph)Spin-½EPL (Europhysics Letters)
researchProduct

Entanglement sudden death and sudden birth in two uncoupled spins

2009

We investigate the entanglement evolution of two qubits interacting with a common environment trough an Heisenberg XX mechanism. We reveal the possibility of realizing the phenomenon of entanglement sudden death as well as the entanglement sudden birth acting on the environment. Such analysis is of maximal interest at the light of the large applications that spin systems have in quantum information theory.

PhysicsQuantum PhysicsSpinsFOS: Physical sciencesQuantum PhysicsQuantum entanglementCondensed Matter PhysicsSudden deathAtomic and Molecular Physics and OpticsQuantum mechanicsQubitLarge applicationsQuantum informationQuantum Physics (quant-ph)Mathematical PhysicsSpin-½entanglement spin systems
researchProduct

Spin chains for two-qubit teleportation

2019

Generating high-quality multi-particle entanglement between communicating parties is the primary resource in quantum teleportation protocols. To this aim, we show that the natural dynamics of a single spin chain is able to sustain the generation of two pairs of Bell states - possibly shared between a sender and a distant receiver - which can in turn enable two-qubit teleportation. In particular, we address a spin-1/2 chain with XX interactions, connecting two pairs of spins located at its boundaries, playing the roles of sender and receiver. In the regime where both end pairs are weakly coupled to the spin chain, it is possible to generate at predefinite times a state that has vanishing inf…

PhysicsQuantum PhysicsSpinsmedia_common.quotation_subjectQuantum communication Quantum entanglement Quantum teleportation 1-dimensional spin chains Quantum InformationFidelityFOS: Physical sciencesQuantum entanglementQuantum Physics01 natural sciencesTeleportationNatural dynamics010305 fluids & plasmasCondensed Matter - Other Condensed Mattersymbols.namesakeQuantum mechanicsQubit0103 physical sciencessymbols010306 general physicsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Quantum teleportationmedia_commonOther Condensed Matter (cond-mat.other)
researchProduct

Controllable Gaussian-Qubit Interface for Extremal Quantum State Engineering

2010

We study state engineering through bilinear interactions between two remote qubits and two-mode Gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.

PhysicsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)Cluster stateGaussianFOS: Physical sciencesGeneral Physics and AstronomyQuantum PhysicsQuantum entanglementMultipartite entanglementsymbols.namesakeQubitQuantum mechanicssymbolsW stateQuantum Physics (quant-ph)Condensed Matter - Statistical MechanicsQuantum teleportationPeres–Horodecki criterion
researchProduct

Fast ion swapping for quantum-information processing

2016

We demonstrate a swap gate between laser-cooled ions in a segmented microtrap via fast physical swapping of the ion positions. This operation is used in conjunction with qubit initialization, manipulation, and readout and with other types of shuttling operations such as linear transport and crystal separation and merging. Combining these operations, we perform quantum process tomography of the swap gate, obtaining a mean process fidelity of 99.5(5)%. The swap operation is demonstrated with motional excitations below 0.05(1) quantum for all six collective modes of a two-ion crystal for a process duration of $42\ensuremath{\mu}\mathrm{s}$. Extending these techniques to three ions, we reverse …

PhysicsQuantum PhysicsTruth tableFOS: Physical sciencesInitialization02 engineering and technology021001 nanoscience & nanotechnologyTopology01 natural sciencesIonProcess durationQubitQuantum process0103 physical sciencesQuantum Physics (quant-ph)010306 general physics0210 nano-technologySwap (computer programming)QuantumPhysical Review A
researchProduct

Observing the phase space trajectory of an entangled matter wave packet

2010

We observe the phase space trajectory of an entangled wave packet of a trapped ion with high precision. The application of a spin dependent light force on a superposition of spin states allows for coherent splitting of the matter wave packet such that two distinct components in phase space emerge. We observe such motion with a precision of better than 9% of the wave packet extension in both momentum and position, corresponding to a 0.8 nm position resolution. We accurately study the effect of the initial ion temperature on the quantum entanglement dynamics. Furthermore, we map out the phonon distributions throughout the action of the displacement force. Our investigation shows corrections t…

PhysicsQuantum PhysicsWave packetCavity quantum electrodynamicsFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmasPhase spaceQuantum mechanicsQubit0103 physical sciencesMatter waveW stateQuantum Physics (quant-ph)010306 general physicsQuantum teleportationTrapped ion quantum computer
researchProduct

Harnessing non-Markovian quantum memory by environmental coupling

2015

Controlling the non-Markovian dynamics of open quantum systems is essential in quantum information technology since it plays a crucial role in preserving quantum memory. Albeit in many realistic scenarios the quantum system can simultaneously interact with composite environments, this condition remains little understood, particularly regarding the effect of the coupling between environmental parts. We analyze the non-Markovian behavior of a qubit interacting at the same time with two coupled single-mode cavities which in turn dissipate into memoryless or memory-keeping reservoirs. We show that increasing the control parameter, that is the two-mode coupling, allows for triggering and enhanci…

PhysicsQuantum PhysicsWork (thermodynamics)Quantum decoherenceMarkov processFOS: Physical sciencesSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Opticssymbols.namesakeCoupling (physics)Quantum mechanicsQubitQuantum systemsymbolsStatistical physicsOpen quantum systems non-Markovianity quantum memoryQuantum informationQuantum Physics (quant-ph)Quantum
researchProduct

All-Optical Storage of Phase-Sensitive Quantum States of Light.

2019

We experimentally demonstrate storage and on-demand release of phase-sensitive, photon-number superposition states of the form $\alpha |0\rangle + \beta e^{i\theta} |1\rangle$ for an optical quantized oscillator mode. For this purpose, we introduce a phase-probing mechanism to a storage system composed of two concatenated optical cavities, which was previously employed for storage of phase-insensitive single-photon states [Phys. Rev. X 3, 041028 (2013)]. This is the first demonstration of all-optically storing highly nonclassical and phase-sensitive quantum states of light. The strong nonclassicality of the states after storage becomes manifest as a negative region in the corresponding Wign…

PhysicsQuantum Physicsbusiness.industryPhase (waves)FOS: Physical sciencesGeneral Physics and AstronomyOptical storage01 natural sciencesSuperposition principleQuantum statePhase spaceQuantum mechanicsQubit0103 physical sciencesComputer data storageWigner distribution functionQuantum Physics (quant-ph)010306 general physicsbusinessPhysical review letters
researchProduct

A NOT gate in a cis-trans photoisomerization model

2007

We numerically study the implementation of a NOT gate by laser pulses in a model molecular system presenting two electronic surfaces coupled by non adiabatic interactions. The two states of the bit are the fundamental states of the cis-trans isomers of the molecule. The gate is classical in the sense that it involves a one-qubit flip so that the encoding of the outputs is based on population analysis which does not take the phases into account. This gate can also be viewed as a double photo-switch process with the property that the same electric field controls the two isomerizations. As an example, we consider one-dimensional cuts in a model of the retinal in rhodopsin already proposed in t…

PhysicsQuantum Physicseducation.field_of_study010304 chemical physicsPhotoisomerizationPhotoswitchPopulationFOS: Physical sciencesSpectral densityPulse durationLaser01 natural sciencesAtomic and Molecular Physics and Opticslaw.inventionlawElectric fieldQubit0103 physical sciences[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsQuantum Physics (quant-ph)010306 general physicseducation
researchProduct

Robust stationary entanglement of two coupled qubits in independent environments

2009

The dissipative dynamics of two interacting qubits coupled to independent reservoirs at nonzero temperatures is investigated, paying special attention to the entanglement evolution. The counter-rotating terms in the qubit-qubit interaction give rise to stationary entanglement, traceable back to the ground state structure. The robustness of this entanglement against thermal noise is thoroughly analyzed, establishing that it can be detected at reasonable experimental temperatures. Some effects linked to a possible reservoir asymmetry are brought to light.

PhysicsQuantum Physicsmedia_common.quotation_subjectStructure (category theory)FOS: Physical sciencesQuantum entanglementQuantum PhysicsAsymmetryAtomic and Molecular Physics and OpticsRobustness (computer science)QubitStatistical physicsGround stateDissipative dynamicsQuantum Physics (quant-ph)decoerenza dissipazione entanglementmedia_common
researchProduct