Search results for "Quitina"

showing 10 items of 52 documents

The chaperone-like protein Cdc48 regulates ubiquitin-proteasome system in plants.

2021

The degradation of misfolded proteins is mainly mediated by the ubiquitin-proteasome system (UPS). UPS can be assisted by the protein Cdc48 but the relationship between UPS and Cdc48 in plants has been poorly investigated. Here, we analyzed the regulation of UPS by Cdc48 in tobacco thanks to two independent cell lines overexpressing Cdc48 constitutively and plant leaves overexpressing Cdc48 transiently. In the cell lines, the accumulation of ubiquitinated proteins was affected both quantitatively and qualitatively and the amount of proteasomal subunits was modified, while proteolytic activities were unchanged. Similarly, the over-expression of Cdc48 in planta impacted the accumulation of ub…

0106 biological sciences0301 basic medicineHypersensitive responseProgrammed cell deathProteasome Endopeptidase ComplexPhysiologyProtein subunitubiquitinomePlant Science01 natural sciencescryptogeinCdc48Fungal Proteins03 medical and health sciences[CHIM.ANAL]Chemical Sciences/Analytical chemistryValosin Containing ProteinTobacco[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPlant ImmunityPlant ProteinsbiologyChemistryUbiquitinUbiquitin homeostasisPlants Genetically ModifiedUbiquitinated ProteinsElicitorCell biology030104 developmental biologyproteasomeProteasomeCell cultureChaperone (protein)biology.protein010606 plant biology & botanyPlant, cellenvironmentREFERENCES
researchProduct

Endocytosis of the glutamate transporter 1 is regulated by laforin and malin: Implications in Lafora disease.

2020

Postprint 36 páginas, 7 figuras

0301 basic medicineArrestinsAmino Acid Transport System X-AGPhosphataseProgressive myoclonus epilepsyBiologyEndocytosisLafora diseaseArticle03 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicineUbiquitinmedicineAnimalsNedd4.2Lafora diseaseGlutamate receptorUbiquitinationTransportermedicine.diseaseProtein Tyrosine Phosphatases Non-ReceptorEndocytosisCell biologyGLT-1030104 developmental biologyNeurologyLafora Diseasebiology.proteinGlutamateLaforin030217 neurology & neurosurgeryGlia
researchProduct

Ubiquitin-Dependent And Independent Signals In Selective Autophagy.

2015

Selective autophagy regulates the abundance of specific cellular components via a specialized arsenal of factors, termed autophagy receptors, that target protein complexes, aggregates, and whole organelles into lysosomes. Autophagy receptors bind to LC3/GABARAP proteins on phagophore and autophagosome membranes, and recognize signals on cargoes to deliver them to autophagy. Ubiquitin (Ub), a well-known signal for the degradation of polypeptides in the proteasome, also plays an important role in the recognition of cargoes destined for selective autophagy. In addition, a variety of cargoes are committed to selective autophagy pathways by Ub-independent mechanisms employing protein-protein int…

0301 basic medicineAutophagosomebiologyUbiquitinGABARAPAutophagyUbiquitinationCell BiologyBAG3BioinformaticsCell biology03 medical and health sciences030104 developmental biologyProteasomeUbiquitinProteolysisbiology.proteinAutophagyAnimalsHumansTarget proteinATG16L1Signal TransductionTrends in cell biology
researchProduct

Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition

2017

Adenosine diphosphate (ADP) enhances platelet activation by virtually any other stimulant to complete aggregation. It binds specifically to the G-protein-coupled membrane receptors P2Y1 and P2Y12, stimulating intracellular signaling cascades, leading to integrin aIIbb3 activation, a process antagonized by endothelial prostacyclin. P2Y12 inhibitors are among the most successful antiplatelet drugs, however, show remarkable variability in efficacy. We reasoned whether a more detailed molecular understanding of ADP-induced protein phosphorylation could identify (1) critical hubs in platelet signaling toward aggregation and (2) novel molecular targets for antiplatelet treatment strategies. We ap…

0301 basic medicineBlood PlateletsPHOSPHATASEImmunologyBlotting WesternUBIQUITINATIONBINDING PROTEIN STXBP5Biochemistry03 medical and health scienceschemistry.chemical_compoundGTP-binding protein regulatorsP2Y12HumansProtein phosphorylationPlatelet activationIloprostPHOSPHORYLATIONCOMBINATIONChemistryPhosphoproteomicsPATHWAYSCell BiologyHematologyPlatelet ActivationSIGNALING REVEALSCell biologyAdenosine DiphosphateAdenosine diphosphate030104 developmental biologyCLOPIDOGRELPhosphorylationPROTEOMICSSECRETIONSignal transductionPlatelet Aggregation InhibitorsSignal TransductionBlood
researchProduct

Doxorubicin anti-tumor mechanisms include Hsp60 post-translational modifications leading to the Hsp60/p53 complex dissociation and instauration of re…

2017

Hsp60 is a pro-carcinogenic chaperonin in certain tumor types by interfering with apoptosis and with tumor cell death. In these tumors, it is not known whether or not doxorubicin anti-tumor effects include a blockage of the pro-carcinogenic action of this protein. We used the human lung mucoepidermoid cell line NCI-H292 and different doses of doxorubicin to measure cell viability, cell cycle progression, cell senescence indicators, Hsp60 levels and its post-translational modifications as well as the release of the chaperonin into the extracellular environment. Cell viability was reduced in relation to doxorubicin dose and this was paralleled by the appearance of cell senescence markers. Con…

0301 basic medicineCancer ResearchLung NeoplasmsChaperoninsCellApoptosismedicine.disease_causeHistones0302 clinical medicineCellular SenescenceAntibiotics AntineoplasticAcetylationG2 Phase Cell Cycle Checkpointsmedicine.anatomical_structureOncology030220 oncology & carcinogenesisCell agingIntracellularProtein BindingSignal TransductionSenescenceCyclin-Dependent Kinase Inhibitor p21animal structuresCell Survivalchemical and pharmacologic phenomenaBiologycomplex mixturesMitochondrial ProteinsDoxorubicin Hsp60 Acetylation Ubiquitination p53 Replicative senescence03 medical and health sciencesDoxorubicin; Hsp60; p53; replicative senescence; post-translational modificationsCell Line TumormedicineHumansCell Proliferationdoxorubicin p53 Hsp60Dose-Response Relationship DrugCell growthfungiUbiquitinationChaperonin 60Molecular biology030104 developmental biologyAcetylationApoptosisDoxorubicinProteolysisCancer researchCarcinoma MucoepidermoidTumor Suppressor Protein p53CarcinogenesisProtein Processing Post-Translational
researchProduct

Aberrant splicing of the tumor suppressor CYLD promotes the development of chronic lymphocytic leukemia via sustained NF-κB signaling

2017

The pathogenesis of chronic lymphocytic leukemia (CLL) has been linked to constitutive NF-κB activation but the underlying mechanisms are poorly understood. Here we show that alternative splicing of the negative regulator of NF-κB and tumor suppressor gene CYLD regulates the pool of CD5+ B cells through sustained canonical NF-κB signaling. Reinforced canonical NF-κB activity leads to the development of B1 cell-associated tumor formation in aging mice by promoting survival and proliferation of CD5+ B cells, highly reminiscent of human B-CLL. We show that a substantial number of CLL patient samples express sCYLD, strongly implicating a role for it in human B-CLL. We propose that our new CLL-l…

0301 basic medicineCancer ResearchTumor suppressor geneCell SurvivalRNA SplicingChronic lymphocytic leukemia2720 Hematology610 Medicine & healthBiologyCD5 Antigenslaw.inventionPathogenesisMice03 medical and health sciencesimmune system diseaseslawhemic and lymphatic diseasesmedicineAnimalsHumans10239 Institute of Laboratory Animal Science1306 Cancer ResearchGenes Tumor SuppressorGeneCell ProliferationB-LymphocytesAlternative splicingNF-kappa BUbiquitinationHematologymedicine.diseaseLeukemia Lymphocytic Chronic B-CellDeubiquitinating Enzyme CYLDLeukemia030104 developmental biologyOncologyImmunologyCancer research570 Life sciences; biologySuppressor2730 OncologyCD5Signal TransductionLeukemia
researchProduct

A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export.

2018

17 páginas, 12 figuras.

0301 basic medicineChromatin ImmunoprecipitationSaccharomyces cerevisiae ProteinsTranscription GeneticSaccharomyces cerevisiaeBiologyyeastEpigenetic RepressionBiochemistryRNA TransportHistones03 medical and health sciencesHistone H30302 clinical medicineTranscription (biology)Gene Expression Regulation FungalGeneticsHistone H2BMonoubiquitinationEpigeneticsRNA MessengerMolecular BiologyGenemRNA exportepigeneticsUbiquitinationMethylationArticlesTATA-Box Binding ProteinYeastCell biology030104 developmental biologyran GTP-Binding ProteinH3K4me3EpigeneticsRNA Polymerase IItranscriptionTranscription030217 neurology & neurosurgeryH2B ubiquitinationEMBO reports
researchProduct

Nuclear Translocation of RELB Is Increased in Diseased Human Liver and Promotes Ductular Reaction and Biliary Fibrosis in Mice.

2019

Background & Aims Cholangiocyte proliferation and ductular reaction contribute to the onset and progression of liver diseases. Little is known about the role of the transcription factor nuclear factor-κB (NF-κB) in this process. We investigated the activities of the RELB proto-oncogene NF-κB subunit in human cholangiocytes and in mouse models of liver disease characterized by a ductular reaction. Methods We obtained liver tissue samples from patients with primary sclerosing cholangitis, primary biliary cholangitis, hepatitis B or C virus infection, autoimmune hepatitis, alcoholic liver disease, or without these diseases (controls) from a tissue bank in Germany. Tissues were analyzed by immu…

0301 basic medicineLiver CirrhosisMaleAlcoholic liver diseaseCholangiocyte proliferationAutoimmune hepatitisProto-Oncogene MasLiver diseaseMice0302 clinical medicineCarbon TetrachlorideCells CulturedRELBLiver DiseasesGastroenterologyMiddle Aged3. Good healthDeubiquitinating Enzyme CYLDCysteine EndopeptidasesProtein TransportLiverGene Knockdown TechniquesCytokines030211 gastroenterology & hepatologyFemaleCell activationAdultLymphotoxin-betaAdolescentCholangitis SclerosingPrimary sclerosing cholangitis03 medical and health sciencesYoung AdultLymphotoxin beta ReceptormedicineAnimalsHumansRNA MessengerParenchymal TissueAgedCell ProliferationCell NucleusHepatologybusiness.industryTranscription Factor RelBEpithelial CellsDicarbethoxydihydrocollidinemedicine.diseaseFibrosis030104 developmental biologyCancer researchLiver functionBile DuctsbusinessGastroenterology
researchProduct

Regulation of E2F1 Transcription Factor by Ubiquitin Conjugation

2017

IF 3.226; International audience; Ubiquitination is a post-translational modification that defines the cellular fate of intracellular proteins. It can modify their stability, their activity, their subcellular location, and even their interacting pattern. This modification is a reversible event whose implementation is easy and fast. It contributes to the rapid adaptation of the cells to physiological intracellular variations and to intracellular or environmental stresses. E2F1 (E2 promoter binding factor 1) transcription factor is a potent cell cycle regulator. It displays contradictory functions able to regulate both cell proliferation and cell death. Its expression and activity are tightly…

0301 basic medicineProgrammed cell deathReviewubiquitinationCatalysislcsh:ChemistryInorganic Chemistry03 medical and health sciencesUbiquitinAnimalsHumansE2F1Physical and Theoretical Chemistry[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biologylcsh:QH301-705.5Molecular BiologyTranscription factorSpectroscopybiologyCell growthOrganic ChemistryE2F1 Transcription FactorGeneral MedicineCell cycleComputer Science ApplicationsCell biology030104 developmental biologyE2F1lcsh:Biology (General)lcsh:QD1-999biology.proteinDNA damagecell cycleE2F1 Transcription FactorIntracellularInternational Journal of Molecular Sciences
researchProduct

BAG2 Interferes with CHIP-Mediated Ubiquitination of HSP72

2016

The maintenance of cellular proteostasis is dependent on molecular chaperones and protein degradation pathways. Chaperones facilitate protein folding, maturation, and degradation, and the particular fate of a misfolded protein is determined by the interaction of chaperones with co-chaperones. The co-factor CHIP (C-terminus of HSP70-inteacting protein, STUB1) ubiquitinates chaperone substrates and directs proteins to the cellular degradation systems. The activity of CHIP is regulated by two co-chaperones, BAG2 and HSPBP1, which are potent inhibitors of the E3 ubiquitin ligase activity. Here, we examined the functional correlation of HSP72, CHIP, and BAG2, employing human primary fibroblasts.…

0301 basic medicineTime FactorsUbiquitin-Protein LigasesImmunoblottingHSP72 Heat-Shock ProteinsUbiquitin-conjugating enzymeProtein degradationArticleCatalysisCell Linelcsh:ChemistryInorganic Chemistry03 medical and health sciencesUbiquitinddc:570Humansaging; BAG2; CHIP; HSP72; proteostasis; ubiquitinationPhysical and Theoretical ChemistryHSP72lcsh:QH301-705.5Molecular BiologyCellular SenescenceSpectroscopySTUB1proteostasisBAG2biologyCHIPagingOrganic ChemistryUbiquitinationGeneral MedicineComputer Science ApplicationsUbiquitin ligaseCell biology030104 developmental biologyProteostasislcsh:Biology (General)lcsh:QD1-999Chaperone (protein)biology.proteinRNA InterferenceProtein foldingMolecular ChaperonesInternational Journal of Molecular Sciences
researchProduct