Search results for "RADIOACTIVITY"
showing 10 items of 334 documents
Fitting flavour symmetries: the case of two-zero neutrino mass textures
2018
We present a numeric method for the analysis of the fermion mass matrices predicted in flavour models. The method does not require any previous algebraic work, it offers a $\chi^{2}$ comparison test and an easy estimate of confidence intervals. It can also be used to study the stability of the results when the predictions are disturbed by small perturbations. We have applied the method to the case of two-zero neutrino mass textures using the latest available fits on neutrino oscillations, derived the available parameter space for each texture and compared them. Textures $A_{1}$ and $A_{2}$ seem favoured because they give a small $\chi^{2}$, allow for large regions in parameter space and giv…
Determining the nuclear neutron distribution from Coherent Elastic neutrino-Nucleus Scattering: current results and future prospects
2020
Coherent Elastic neutrino-Nucleus Scattering (CEνNS), a process recently measured for the first time at ORNL’s Spallation Neutron Source, is directly sensitive to the weak form factor of the nucleus. The European Spallation Source (ESS), presently under construction, will generate the most intense pulsed neutrino flux suitable for the detection of CEνNS. In this paper we quantify its potential to determine the root mean square radius of the point-neutron distribution, for a variety of target nuclei and a suite of detectors. To put our results in context we also derive, for the first time, a constraint on this parameter from the analysis of the energy and timing data of the CsI detector at t…
Vacuum correlators at short distances from lattice QCD
2021
Non-perturbatively computing the hadronic vacuum polarization at large photon virtualities and making contact with perturbation theory enables a precision determination of the electromagnetic coupling at the $Z$ pole, which enters global electroweak fits. In order to achieve this goal ab initio using lattice QCD, one faces the challenge that, at the short distances which dominate the observable, discretization errors are hard to control. Here we address challenges of this type with the help of static screening correlators in the high-temperature phase of QCD, yet without incurring any bias. The idea is motivated by the observations that (a) the cost of high-temperature simulations is typica…
Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution
2021
The NEXT collaboration: et al.
Effect of double frequency heating on the lead afterglow beam currents of an electron cyclotron resonance ion source
2017
International audience; The effect of double frequency heating on the performance of the CERN GTS-LHC 14.5 GHz ElectronCyclotron Resonance (ECR) ion source in afterglow mode is reported. The source of the secondary microwave frequency was operated both in pulsed and continuous wave (CW) modes within the range of 12–18 GHz. The results demonstrate that the addition of the secondary frequency can significantly impact the extracted beam currents and the temporal stability of the beam during the afterglow discharge. For example, up to a factor of 2.6 increase was achieved for 208Pb35+ and a factor of 3.1 for 208Pb37+ compared to single frequency afterglow currents. It is shown that these effect…
Vacuum electrical breakdown conditioning study in a parallel plate electrode pulsed dc system
2019
Conditioning of a metal structure in a high-voltage system is the progressive development of resistance to vacuum arcing over the operational life of the system. This is, for instance, seen during the initial operation of radio frequency (rf) cavities in particle accelerators. It is a relevant topic for any technology where breakdown limits performance and where conditioning continues for a significant duration of system run time. Projected future linear accelerators require structures with accelerating gradients of up to 100 MV/m. Currently, this performance level is achievable only after a multimonth conditioning period. In this work, a pulsed dc system applying voltage pulses over paral…
Implementing the three-particle quantization condition including higher partial waves
2019
We present an implementation of the relativistic three-particle quantization condition including both $s$- and $d$-wave two-particle channels. For this, we develop a systematic expansion about threshold of the three-particle divergence-free K matrix, $\mathcal{K}_{\mathrm{df,3}}$, which is a generalization of the effective range expansion of the two-particle K matrix, $\mathcal{K}_2$. Relativistic invariance plays an important role in this expansion. We find that $d$-wave two-particle channels enter first at quadratic order. We explain how to implement the resulting multichannel quantization condition, and present several examples of its application. We derive the leading dependence of the …
Effective field theory after a new-physics discovery
2018
When a new heavy particle is discovered at the LHC or at a future high-energy collider, it will be interesting to study its decays into Standard Model particles using an effective field-theory framework. We point out that the proper effective theory can not be constructed as an expansion in local, higher-dimensional operators; rather, it must be based on non-local operators defined in soft-collinear effective theory (SCET). For the interesting case where the new resonance is a gauge-singlet spin-0 boson, which is the first member of a new sector governed by a mass scale $M$, we show how a consistent scale separation between $M$ and the electroweak scale $v$ is achieved up to next-to-next-to…
Searches for atmospheric long-lived particles
2020
Long-lived particles are predicted in extensions of the Standard Model that involve relatively light but very weakly interacting sectors. In this paper we consider the possibility that some of these particles are produced in atmospheric cosmic ray showers, and their decay intercepted by neutrino detectors such as IceCube or Super-Kamiokande. We present the methodology and evaluate the sensitivity of these searches in various scenarios, including extensions with heavy neutral leptons in models of massive neutrinos, models with an extra $U(1)$ gauge symmetry, and a combination of both in a $U(1)_{B-L}$ model. Our results are shown as a function of the production rate and the lifetime of the c…
New method for calculating electromagnetic effects in semileptonic beta-decays of mesons
2020
We construct several classes of hadronic matrix elements and relate them to the low-energy constants in Chiral Perturbation Theory that describe the electromagnetic effects in the semileptonic beta decay of the pion and the kaon. We propose to calculate them using lattice QCD, and argue that such a calculation will make an immediate impact to a number of interesting topics at the precision frontier, including the outstanding anomalies in $|V_{us}|$ and the top-row Cabibbo-Kobayashi-Maskawa matrix unitarity.