Search results for "RAMAN"
showing 10 items of 1328 documents
Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere
2018
Time dynamics of doping and strain induced in single layer graphene by thermal treatments up to 300 degrees C in vacuum, nitrogen, carbon dioxide and oxygen controlled atmosphere are deeply studied by Raman spectroscopy and they are compared with its morphological evolution investigated by Atomic Force Microscopy. The reaction dynamics in oxygen treatments is determined down to a time scale of few minutes as well as that of dedoping process made by water vapor treatment. The interplay of strain modification and doping effects is separated. The strain is clarified to be strongly influenced by the cooling time. The doping removal is dominated by the water vapor, showing that the concentration…
Effect of air on oxygen p-doped graphene on SiO2
2016
Stability in ambient air or in vacuum-controlled atmosphere of molecular oxygen-induced p-type doping of graphene monolayer on SiO2 substrate on Si is investigated by micro-Raman spectroscopy and atomic force microscopy (AFM). The Raman 2D and G bands spectral positions and amplitude ratio are affected by the permanence in air atmosphere in a time scale of months whereas the vacuum safely maintains the doping effects determined through Raman bands. No morphological effects are induced by the doping and post-doping treatments. A reactivity of ambient molecular gas with stably trapped oxygen is suggested to induce the doping modification. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Surface enhanced Raman scattering of silver sensitized cobalt nanoparticles in metal–dielectric nanocomposites
2008
We report the preparation of a new type of nanocomposite containing cobalt and silver nanoparticles organized in parallel layers with a well controlled separation. This arrangement allows the observation of an enhanced low-frequency Raman signal at the vibration frequency of cobalt nanoparticles excited through the surface plasmons of silver nanoparticles. Numerical simulations of the electric field confirm the emergence of hot spots when the separation between silver and cobalt nanoparticles is small enough. © IOP Publishing Ltd.
Influence of Ge doping level on the EPR signal of Ge(1), Ge(2) and E'Ge defects in Ge-doped silica
2011
Abstract We present an experimental investigation on the Ge doping level dependence of the Electron Paramagnetic Resonance (EPR) signal spectral features of the Ge(1), Ge(2) and E'Ge defects induced in Ge doped silica. We have studied samples produced by sol–gel or PCVD techniques and doped with different amounts of Ge up to 20% by weight. The samples were gamma or beta ray irradiated and successively they were thermally treated to isolate the EPR signals of the different point defects. The data show that the EPR line shapes of the Ge(1) and the Ge(2) centers are progressively modified for doping level higher than 1%, whereas the line shape of the E'Ge defect appears independent from the do…
Influence of oxide substrates on monolayer graphene doping process by thermal treatments in oxygen
2019
Abstract The structural and the electronic properties of monolayer graphene made by chemical vapor deposition and transferred on various oxide substrates ( SiO 2 , Al 2 O 3 , and HfO 2 ) are investigated by Raman Spectroscopy and Atomic Force Microscopy in order to highlight the influence of the substrate on the features of p-doping obtained by O 2 thermal treatments. By varing the treatment temperature up to 400 °C, the distribution of the reaction sites of the substrates is evaluated. Their total concentration and the consequent highest doping available is determined and it is shown that this latter is linked to the water affinity of the substrate. Finally, by varing the exposure time to …
Optical determination and identification of organic shells around nanoparticles: application to silver nanoparticles
2013
We present a simple method to prove the presence of an organic shell around silver nanoparticles. This method is based on the comparison between optical extinction measurements of isolated nanoparticles and Mie calculations predicting the expected wavelength of the Localized Surface Plasmon Resonance of the nanoparticles with and without the presence of an organic layer. This method was applied to silver nanoparticles which seemed to be well protected from oxidation. Further experimental characterization via Surface Enhanced Raman Spectroscopy (SERS) measurements allowed to identify this protective shell as ethylene glycol. Combining LSPR and SERS measurements could thus give proof of both …
Thermal Properties, Raman Spectroscopy and Tem Images of Neutron-Bombarded Graphite
2013
Neutron-irradiated graphite to a total dose of 3.6 × 1016 n cm−2 was studied by DSC, Raman spectroscopy and transmission electron microscopy (TEM). The Wigner energy of neutron-irradiated graphite was 9.5 J/g as measured by DSC; it was released with an exothermal peak at 220°C. The Raman spectroscopy has confirmed the expected effect caused by neutron irradiation of the graphite substrate. The TEM imaging has shown that neutron-irradiated graphite can be effectively exfoliated by sonication in comparison to pristine graphite, which under similar conditions does not exfoliate at all. The interstitial Frenkel defects in neutron-irradiated graphite are intercalated between the graphene layers …
Dependence of the emission properties of the germanium lone pair center on Ge doping of silica
2011
We present an experimental investigation regarding the changes induced by the Ge doping level on the emission profile of the germanium lone pair center (GLPC) in Ge doped silica. The investigated samples have been produced by the sol-gel method and by plasma-activated chemical vapor deposition and have doping levels up to 20% by weight. The recorded photoluminescence spectra show that the GLPC emission profile is the same when the Ge content is lower than ∼ 1% by weight, whereas it changes for higher doping levels. We have also performed Raman scattering measurements that show the decrease of the D1 Raman band at 490 cm( - 1) when the Ge content is higher than 1% by weight. The data suggest…
<title>Micro-Raman scattering and infrared spectra of hemoglobin</title>
2008
Confocal micro-Raman and FT-IR spectroscopies have been used for detection of radiation influence of hemoglobin of patients examined by radio-isotopes diagnosis (Tc99m). After irradiation we observed some little changes of the Raman scattering bands which connected with out of plane porphyrine bending vibrations, also we observed additional band due to methemoglobin. Radiation of blood lead to the transition from hemoglobin (Fe2+) to methemoglobin (Fe3+) with a delocalization of iron from porphyrine plane. It was shown that FT-IR spectra indicate the radiation effects on hemoglobin.© (2008) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is per…