Search results for "REGULARIZATION"
showing 10 items of 189 documents
NUMERICAL SIMULATION OF MAGNETIC DROPLET DYNAMICS IN A ROTATING FIELD
2013
Dynamics and hysteresis of an elongated droplet under the action of a rotating magnetic field is considered for mathematical modelling. The shape of droplet is found by regularization of the ill-posed initial–boundary value problem for nonlinear partial differential equation (PDE). It is shown that two methods of the regularization – introduction of small viscous bending torques and construction of monotonous continuous functions are equivalent. Their connection with the regularization of the ill-posed reverse problems for the parabolic equation of heat conduction is remarked. Spatial discretization is carried out by the finite difference scheme (FDS). Time evolution of numerical solutions …
High-order regularization in lattice-Boltzmann equations
2017
A lattice-Boltzmann equation (LBE) is the discrete counterpart of a continuous kinetic model. It can be derived using a Hermite polynomial expansion for the velocity distribution function. Since LBEs are characterized by discrete, finite representations of the microscopic velocity space, the expansion must be truncated and the appropriate order of truncation depends on the hydrodynamic problem under investigation. Here we consider a particular truncation where the non-equilibrium distribution is expanded on a par with the equilibrium distribution, except that the diffusive parts of high-order nonequilibrium moments are filtered, i.e., only the corresponding advective parts are retained afte…
Adaptive quadratic regularization for baseline wandering removal in wearable ECG devices
2016
The electrocardiogram (ECG) is one of the most important physiological signals to monitor the health status of a patient. Technological advances allow the size and weight of ECG acquisition devices to be strongly reduced so that wearable systems are now available, even though the computational power and memory capacity is generally limited. An ECG signal is affected by several artifacts, among which the baseline wandering (BW), i.e., a slowly varying variation of its trend, represents a major disturbance. Several algorithms for BW removal have been proposed in the literature. In this paper, we propose new methods to face the problem that require low computational and memory resources and th…
Sparse relative risk regression models
2020
Summary Clinical studies where patients are routinely screened for many genomic features are becoming more routine. In principle, this holds the promise of being able to find genomic signatures for a particular disease. In particular, cancer survival is thought to be closely linked to the genomic constitution of the tumor. Discovering such signatures will be useful in the diagnosis of the patient, may be used for treatment decisions and, perhaps, even the development of new treatments. However, genomic data are typically noisy and high-dimensional, not rarely outstripping the number of patients included in the study. Regularized survival models have been proposed to deal with such scenarios…
On 1-Laplacian Elliptic Equations Modeling Magnetic Resonance Image Rician Denoising
2015
Modeling magnitude Magnetic Resonance Images (MRI) rician denoising in a Bayesian or generalized Tikhonov framework using Total Variation (TV) leads naturally to the consideration of nonlinear elliptic equations. These involve the so called $1$-Laplacian operator and special care is needed to properly formulate the problem. The rician statistics of the data are introduced through a singular equation with a reaction term defined in terms of modified first order Bessel functions. An existence theory is provided here together with other qualitative properties of the solutions. Remarkably, each positive global minimum of the associated functional is one of such solutions. Moreover, we directly …
Rough linear PDE's with discontinuous coefficients - existence of solutions via regularization by fractional Brownian motion
2020
We consider two related linear PDE's perturbed by a fractional Brownian motion. We allow the drift to be discontinuous, in which case the corresponding deterministic equation is ill-posed. However, the noise will be shown to have a regularizing effect on the equations in the sense that we can prove existence of solutions for almost all paths of the fractional Brownian motion.
Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range
2014
A Bayesian solution is suggested for the modelling of spatial point patterns with inhomogeneous hard-core radius using Gaussian processes in the regularization. The key observation is that a straightforward use of the finite Gibbs hard-core process likelihood together with a log-Gaussian random field prior does not work without penalisation towards high local packing density. Instead, a nearest neighbour Gibbs process likelihood is used. This approach to hard-core inhomogeneity is an alternative to the transformation inhomogeneous hard-core modelling. The computations are based on recent Markovian approximation results for Gaussian fields. As an application, data on the nest locations of Sa…
Spline Algorithms for Deconvolution and Inversion of Heat Equation
2014
In this chapter, we present algorithms based on Tikhonov regularization for solving two related problems: deconvolution and inversion of heat equation. The algorithms, which utilize the SHA technique, provide explicit solutions to the problems in one and two dimensions.
Optimization and Inversion
2009
Validation of the solution method using Tikhonov regularization algorithm for spectral line diagnostics of microsize plasma
2014
This paper is devoted obtaining the threshold of the credibility of the solution by means of Tikhonov's regularization method in case of spectral lines, emitted from microsize plasma sources. The reliability of Tikhonov algorithm was verified by means of solving model tasks with different ratio between instrumental function and measured profile and, with different levels of noise.