Search results for "REGULARIZATION"
showing 10 items of 189 documents
Adiabatic regularization and particle creation for spin one-half fields
2013
The extension of the adiabatic regularization method to spin-$1/2$ fields requires a self-consistent adiabatic expansion of the field modes. We provide here the details of such expansion, which differs from the WKB ansatz that works well for scalars, to firmly establish the generalization of the adiabatic renormalization scheme to spin-$1/2$ fields. We focus on the computation of particle production in de Sitter spacetime and obtain an analytic expression of the renormalized stress-energy tensor for Dirac fermions.
Towards N=1 Super-Yang-Mills on the Lattice
1997
We consider the lattice regularization of N=1 supersymmetric Yang--Mills theory with Wilson fermions. This formulation breaks supersymmetry at any finite lattice spacing; we discuss how Ward identities can be used to define a supersymmetric continuum limit, which coincides with the point where the gluino becomes massless. As a first step towards the understanding of the zero gluino-mass limit, we present results on the quenched low-lying spectrum of SU(2) N=1 Super-Yang--Mills, at $\beta=2.6$ on a $V=16^3 \times 32$ lattice, in the OZI approximation. Our results, in spite of the quenched and OZI approximations, are in remarkable agreement with theoretical predictions in the supersymmetric t…
Gluon mass generation without seagull divergences
2009
Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for t…
Gluon mass generation in the PT-BFM scheme
2006
In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search …
Threshold expansion of the sunset diagram
1999
By use of the threshold expansion we develop an algorithm for analytical evaluation, within dimensional regularization, of arbitrary terms in the expansion of the (two-loop) sunset diagram with general masses m_1, m_2 and m_3 near its threshold, i.e. in any given order in the difference between the external momentum squared and its threshold value, (m_1+m_2+m_3)^2. In particular, this algorithm includes an explicit recurrence procedure to analytically calculate sunset diagrams with arbitrary integer powers of propagators at the threshold.
Polarized triple-collinear splitting functions at NLO for processes with photons
2014
We compute the polarized splitting functions in the triple collinear limit at next-to-leading order accuracy (NLO) in the strong coupling $\alpha_{\rm S}$, for the splitting processes $\gamma \to q \bar{q} \gamma$, $\gamma \to q \bar{q} g$ and $g \to q \bar{q} \gamma$. The divergent structure of each splitting function was compared to the predicted behaviour according to Catani's formula. The results obtained in this paper are compatible with the unpolarized splitting functions computed in a previous article. Explicit results for NLO corrections are presented in the context of conventional dimensional regularization (CDR).
Conformal Symmetry and Differential Regularization of the Three-Gluon Vertex
1992
The conformal symmetry of the QCD Lagrangian for massless quarks is broken both by renormalization effects and the gauge fixing procedure. Renormalized primitive divergent amplitudes have the property that their form away from the overall coincident point singularity is fully determined by the bare Lagrangian, and scale dependence is restricted to $\delta$-functions at the singularity. If gauge fixing could be ignored, one would expect these amplitudes to be conformal invariant for non-coincident points. We find that the one-loop three-gluon vertex function $\Gamma_{\mu\nu\rho}(x,y,z)$ is conformal invariant in this sense, if calculated in the background field formalism using the Feynman ga…
Dimensional interpolation and the Selberg integral
2019
Abstract We show that a version of dimensional interpolation for the Riemann–Roch–Hirzebruch formalism in the case of a grassmannian leads to an expression for the Euler characteristic of line bundles in terms of a Selberg integral. We propose a way to interpolate higher Bessel equations, their wedge powers, and monodromies thereof to non–integer orders, and link the result with the dimensional interpolation of the RRH formalism in the spirit of the gamma conjectures.
A quasi-finite basis for multi-loop Feynman integrals
2014
We present a new method for the decomposition of multi-loop Euclidean Feynman integrals into quasi-finite Feynman integrals. These are defined in shifted dimensions with higher powers of the propagators, make explicit both infrared and ultraviolet divergences, and allow for an immediate and trivial expansion in the parameter of dimensional regularization. Our approach avoids the introduction of spurious structures and thereby leaves integrals particularly accessible to direct analytical integration techniques. Alternatively, the resulting convergent Feynman parameter integrals may be evaluated numerically. Our approach is guided by previous work by the second author but overcomes practical …
Adiabatic expansions for Dirac fields, renormalization, and anomalies
2018
11 pags.