Search results for "RICS"
showing 10 items of 14086 documents
Une structure o-minimale sans décomposition cellulaire
2008
Resume Nous construisons une extension o-minimale du corps des nombres reels qui n'admet pas la propriete de decomposition cellulaire en classe C ∞ . Pour citer cet article : O. Le Gal, J.-P. Rolin, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
F-contractions of Hardy–Rogers-type and application to multistage decision
2016
We prove fixed point theorems for F-contractions of Hardy–Rogers type involving self-mappings defined on metric spaces and ordered metric spaces. An example and an application to multistage decision processes are given to show the usability of the obtained theorems.
On two classes of finite supersoluble groups
2017
ABSTRACTLet ℨ be a complete set of Sylow subgroups of a finite group G, that is, a set composed of a Sylow p-subgroup of G for each p dividing the order of G. A subgroup H of G is called ℨ-S-semipermutable if H permutes with every Sylow p-subgroup of G in ℨ for all p∉π(H); H is said to be ℨ-S-seminormal if it is normalized by every Sylow p-subgroup of G in ℨ for all p∉π(H). The main aim of this paper is to characterize the ℨ-MS-groups, or groups G in which the maximal subgroups of every Sylow subgroup in ℨ are ℨ-S-semipermutable in G and the ℨ-MSN-groups, or groups in which the maximal subgroups of every Sylow subgroup in ℨ are ℨ-S-seminormal in G.
Symmetric and finitely symmetric polynomials on the spaces ℓ∞ and L∞[0,+∞)
2018
We consider on the space l∞ polynomials that are invariant regarding permutations of the sequence variable or regarding finite permutations. Accordingly, they are trivial or factor through c0. The analogous study, with analogous results, is carried out on L∞[0,+∞), replacing the permutations of N by measurable bijections of [0,+∞) that preserve the Lebesgue measure.
Global Lp -integrability of the derivative of a quasiconformal mapping
1988
Let f be a quasiconformal mapping of an open bounded set U in Rn into Rn . Then f′ belongs to Lp(U) for some p > n provided that f satisfies (a) U is a uniform domain and fU is a John domain or (b) f is quasisymmetric and U satisfies a metric plumpness condition.
Efficient generation of restricted growth words
2013
A length n restricted growth word is a word w=w"1w"2...w"n over the set of integers where w"1=0 and each w"i, i>1, lies between 0 and the value of a word statistics of the prefix w"1w"2...w"i"-"1 of w, plus one. Restricted growth words simultaneously generalize combinatorial objects as restricted growth functions, staircase words and ascent or binary sequences. Here we give a generic generating algorithm for restricted growth words. It produces a Gray code and runs in constant average time provided that the corresponding statistics has some local properties.
Vertical versus horizontal Sobolev spaces
2020
Let $\alpha \geq 0$, $1 < p < \infty$, and let $\mathbb{H}^{n}$ be the Heisenberg group. Folland in 1975 showed that if $f \colon \mathbb{H}^{n} \to \mathbb{R}$ is a function in the horizontal Sobolev space $S^{p}_{2\alpha}(\mathbb{H}^{n})$, then $\varphi f$ belongs to the Euclidean Sobolev space $S^{p}_{\alpha}(\mathbb{R}^{2n + 1})$ for any test function $\varphi$. In short, $S^{p}_{2\alpha}(\mathbb{H}^{n}) \subset S^{p}_{\alpha,\mathrm{loc}}(\mathbb{R}^{2n + 1})$. We show that the localisation can be omitted if one only cares for Sobolev regularity in the vertical direction: the horizontal Sobolev space $S_{2\alpha}^{p}(\mathbb{H}^{n})$ is continuously contained in the vertical Sobolev sp…
Random Tensor Theory: Extending Random Matrix Theory to Mixtures of Random Product States
2012
We consider a problem in random matrix theory that is inspired by quantum information theory: determining the largest eigenvalue of a sum of p random product states in $${(\mathbb {C}^d)^{\otimes k}}$$ , where k and p/d k are fixed while d → ∞. When k = 1, the Marcenko-Pastur law determines (up to small corrections) not only the largest eigenvalue ( $${(1+\sqrt{p/d^k})^2}$$ ) but the smallest eigenvalue $${(\min(0,1-\sqrt{p/d^k})^2)}$$ and the spectral density in between. We use the method of moments to show that for k > 1 the largest eigenvalue is still approximately $${(1+\sqrt{p/d^k})^2}$$ and the spectral density approaches that of the Marcenko-Pastur law, generalizing the random matrix…
Análisis de la utilidad del algoritmo Gradient Boosting Machine (GBM) en la predicción del fracaso empresarial
2018
Este estudio, novedoso en cuanto a la utilizacion de la metodologia basada en la cultura de los algoritmos, prueba la capacidad de la tecnica ‘Gradient Boosting Machine’ (GBM) en la prediccion de l...
Adjusting the Knox test by accounting for spatio-temporal crime risk heterogeneity to analyse near-repeats
2020
The near-repeat phenomenon usually occurs with any crime. Hence, to implement preventive measures, it is of great interest to figure out at which spatio-temporal scale crimes are more likely to be repeated by offenders. The Knox test is the most used statistical tool for evaluating the presence of the near-repeat phenomenon given a dataset of crimes that are located in space and time. The classic version of this test assumes that crime risk is homogeneous in both space and time, although this assumption rarely holds in reality. Therefore, the main goal of this article is to highlight the necessity of adjusting the standard version of the Knox test, including spatial and temporal effects th…