Search results for "RIE"

showing 10 items of 28650 documents

Integral imaging with Fourier-plane recording

2017

Integral Imaging is well known for its capability of recording both the spatial and the angular information of threedimensional (3D) scenes. Based on such an idea, the plenoptic concept has been developed in the past two decades, and therefore a new camera has been designed with the capacity of capturing the spatial-angular information with a single sensor and after a single shot. However, the classical plenoptic design presents two drawbacks, one is the oblique recording made by external microlenses. Other is loss of information due to diffraction effects. In this contribution report a change in the paradigm and propose the combination of telecentric architecture and Fourier-plane recordin…

010302 applied physicsMicrolensDiffractionIntegral imagingPlane (geometry)Computer sciencebusiness.industryComputationComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONOblique case01 natural sciencesÒptica Aparells i instruments010309 opticssymbols.namesakeFourier transformOptics0103 physical sciencessymbolsComputer visionDepth of fieldArtificial intelligenceFourier Anàlisi debusinessThree-Dimensional Imaging, Visualization, and Display 2017
researchProduct

Atomic, electronic and magnetic structure of an oxygen interstitial in neutron-irradiated Al2O3 single crystals

2020

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053 and Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion application”. The views and opinions expressed herein do not necessarily reflect those of the European Commission. In addition, the research leading to these results has received funding from the Estonian Research Council grant (PUT PRG619).

010302 applied physicsMultidisciplinaryMaterials scienceMagnetic momentMagnetic structurelcsh:Rlcsh:MedicineFormal charge02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMolecular physicslaw.inventionIonBond lengthlaw0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Density functional theorylcsh:Q0210 nano-technologyElectron paramagnetic resonanceGround statelcsh:ScienceScientific Reports
researchProduct

Peculiarities of the diffusion-controlled radiation defect accumulation kinetics under high fluencies

2020

We are grateful to A. Lushchik and E. Shablonin for numerous and valuable discussions. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceDiffusionKineticsThermodynamicsFluence effects02 engineering and technologyRadiation021001 nanoscience & nanotechnologyAbstract theoryRadiation defects01 natural sciencesFluenceAccumulation kineticsDiffusionChemical kinetics0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]0210 nano-technologySaturation (chemistry)InstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Development, Characterization, and Testing of a SiC-Based Material for Flow Channel Inserts in High-Temperature DCLL Blankets

2018

This work has been carried out within the framework of the EUROfusion Consortium. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceFabricationelectrical conductivityBlanketCondensed Matter Physics01 natural sciencesTemperature measurement010305 fluids & plasmasCorrosionchemistry.chemical_compoundThermal conductivitydual-coolant lead-lithium (DCLL) blanketFlexural strengthchemistryCorrosion by PbLi0103 physical sciencesThermalSilicon carbide:NATURAL SCIENCES:Physics [Research Subject Categories]flow channel insert (FCI)thermal conductivityComposite materialporous SiCIEEE Transactions on Plasma Science
researchProduct

Ion track template technology for fabrication of CdTe and CdO nanocrystals

2020

Abstract CdTe and CdO nanocrystals were synthesized by chemical deposition into a-SiO2/n-Si ion track template formed by 200 MeV Xe ion irradiation with the fluence of 108 ions/cm2. Depending on the temperature of the solution CdTe + CdO and single-phase CdO with a hexagonal crystal structure were obtained, respectively. The study of the current – voltage characteristics of the obtained structure with the single-phase CdO allows us to estimate the number of grain boundaries and the height of the potential barrier, as well as the n-type conductivity.

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceIon trackPhysics::Medical PhysicsAnalytical chemistry02 engineering and technologyConductivity021001 nanoscience & nanotechnology01 natural sciencesFluenceCadmium telluride photovoltaicsIonCondensed Matter::Materials ScienceNanocrystal0103 physical sciencesRectangular potential barrierGrain boundary0210 nano-technologyInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Accumulation of radiation defects and modification of micromechanical properties under MgO crystal irradiation with swift 132Xe ions

2020

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. A.A. also acknowledges support via the project GF AP05134257 of Ministry of Education and Science of the Republic of Kazakhstan .

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceOptical absorptionAnalytical chemistryDepth profile of hardeningCathodoluminescence02 engineering and technologyRadiation021001 nanoscience & nanotechnologySwift heavy ions01 natural sciencesFluenceRadiation defectsSpectral lineIonCrystalFluence dependenceIonization0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Irradiation0210 nano-technologyInstrumentationMagnesium oxideNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Depth profiles of damage creation and hardening in MgO irradiated with GeV heavy ions

2019

This work has been performed within the framework of the EUROfusion Enabling Research project: ENR-MFE19.ISSP-UL-02 “Advanced experimental and theoretical analysis of defect evolution and structural disordering in optical and dielectric materials for fusion applications”. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

010302 applied physicsNuclear and High Energy PhysicsPhotoluminescenceMaterials scienceDislocations02 engineering and technologyNanoindentation021001 nanoscience & nanotechnologySwift heavy ions01 natural sciencesMgO crystalsNanoindentationIonCondensed Matter::Materials ScienceIndentation0103 physical sciencesHardening (metallurgy):NATURAL SCIENCES:Physics [Research Subject Categories]IrradiationComposite materialDislocation0210 nano-technologySpectroscopyInstrumentationPhotoluminescenceNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Impact of the molecular structure of an indandione fragment containing azobenzene derivatives on the morphology and electrical properties of thin fil…

2016

Abstract The solution casting method is low-cost processing method. Moreover, it is possible to prepare amorphous thin films by using this method, and thus, both optical quality and electrical properties could be improved in compare to polycrystalline films made by thermal evaporation in vacuum. Therefore, low-molecular-weight compounds that form amorphous structure from solution could be promising in organic electronics. In this work film morphology, molecule energy levels, and charge carrier mobility in thin films of indandione fragment containing azobenzene derivatives were studied. Deep charge carrier trapping states that drastically influenced charge carrier mobility were observed for …

010302 applied physicsOrganic electronicsMaterials science02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesAmorphous solidchemistry.chemical_compoundAzobenzenechemistryElectron affinity0103 physical sciencesOrganic chemistryPhysical chemistryGeneral Materials ScienceCharge carrierCrystalliteThin filmIonization energy0210 nano-technologyMaterials Chemistry and Physics
researchProduct

Magnetic properties of exciton trapped by an off-center ionized donor in single quantum dot

2021

Abstract It is known that the lines of exciton (X) and exciton trapped by an ionized donor ( D + , X ) are often very close which makes very difficult their experimental identification. In order to facilitate their distinction in spherical quantum dots, we investigate the effect of an applied magnetic field studying the binding energy of the complex ( D + , X ) as function of dot size and the ionized donor position. Our calculation is using a variational approach taking into account the interactions between all charge carriers. Our results show that the complex is more sensitive to the magnetic field than the exciton and that the energy of the exciton is not sufficiently affected when the i…

010302 applied physicsPhysicsExcitonBinding energyGeneral Physics and Astronomy02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsMagnetic fieldCondensed Matter::Materials ScienceQuantum dotPosition (vector)Ionization0103 physical sciencesDiamagnetismGeneral Materials ScienceCharge carrier0210 nano-technologyCurrent Applied Physics
researchProduct

Stability analysis of a paramagnetic spheroid in a precessing field

2019

Abstract The stability of a paramagnetic prolate or oblate spheroidal particle in a precessing magnetic field is studied. The bifurcation diagram is calculated analytically as a function of the magnetic field frequency and the precession angle. The orientation of the particle in the synchronous regime is calculated. The rotational dynamics and the mean rotational frequency in the asynchronous regime are also obtained. The theoretical model we describe enables the analytic calculation of the dynamics of the particle in the limiting case when the motion is periodic. The theoretical models were also compared with experimental results of rod like particle dynamics in a precessing magnetic field…

010302 applied physicsPhysicsField (physics)Dynamics (mechanics)02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsBifurcation diagram01 natural sciencesStability (probability)Electronic Optical and Magnetic MaterialsComputational physicsMagnetic fieldParamagnetismOrientation (geometry)0103 physical sciencesParticle0210 nano-technologyJournal of Magnetism and Magnetic Materials
researchProduct