Search results for "RNA Stability"

showing 10 items of 81 documents

Snapshots of a shrinking partner: Genome reduction inSerratia symbiotica

2016

AbstractGenome reduction is pervasive among maternally-inherited endosymbiotic organisms, from bacteriocyte- to gut-associated ones. This genome erosion is a step-wise process in which once free-living organisms evolve to become obligate associates, thereby losing non-essential or redundant genes/functions. Serratia symbiotica (Gammaproteobacteria), a secondary endosymbiont present in many aphids (Hemiptera: Aphididae), displays various characteristics that make it a good model organism for studying genome reduction. While some strains are of facultative nature, others have established co-obligate associations with their respective aphid host and its primary endosymbiont (Buchnera). Further…

0301 basic medicineSerratiaRNA Stability030106 microbiologyved/biology.organism_classification_rank.speciesGenomicsGenomeArticle03 medical and health sciencesRNA TransferGammaproteobacteriaCluster AnalysisAmino AcidsModel organismGene030304 developmental biologyGene RearrangementGenetics0303 health sciencesMultidisciplinarybiologyObligate030306 microbiologyved/biologyBacteriocyteGene rearrangementGene Expression Regulation Bacterialbiochemical phenomena metabolism and nutritionbiology.organism_classificationBiosynthetic PathwaysRNA Bacterial030104 developmental biologyEvolutionary biologyGenes BacterialBuchneraGenome Bacterial
researchProduct

Preservation of Multiple Mammalian Tissues to Maximize Science Return from Ground Based and Spaceflight Experiments.

2016

Background Even with recent scientific advancements, challenges posed by limited resources and capabilities at the time of sample dissection continue to limit the collection of high quality tissues from experiments that can be conducted only infrequently and at high cost, such as in space. The resources and time it takes to harvest tissues post-euthanasia, and the methods and duration of long duration storage, potentially have negative impacts on sample quantity and quality, thereby limiting the scientific outcome that can be achieved. Objectives The goals of this study were to optimize methods for both sample recovery and science return from rodent experiments, with possible relevance to b…

0301 basic medicineTime FactorsPhysiologyMolecular biologyRNA Stabilitylcsh:MedicineBiochemistrylaw.inventionMice0302 clinical medicinelawSpecimen StorageBone MarrowImmune PhysiologyGene expressionFreezingMedicine and Health Scienceslcsh:ScienceMammalsMultidisciplinaryPreservation methodsLimitingEye MusclesGlutathioneEnzymesRNA isolation030220 oncology & carcinogenesisTissue and Organ HarvestingSmall IntestineSample collectionAnatomyResearch ArticleOcular AnatomyImmunologyRNA integrity numberBiologySpaceflightResearch and Analysis MethodsBiomolecular isolationSpecimen HandlingAndrology03 medical and health sciencesOcular SystemAnimalsHumansTime pointCryopreservationlcsh:RRNABiology and Life SciencesProteinsSpace FlightGastrointestinal Tract030104 developmental biologyMolecular biology techniquesStorage and HandlingImmune SystemEnzymologylcsh:QPeptidesDigestive SystemSpleenCatalasesPloS one
researchProduct

A Trans-Omics Comparison Reveals Common Gene Expression Strategies in Four Model Organisms and Exposes Similarities and Differences between Them.

2021

AbstractThe ultimate goal of gene regulation should focus on the protein level. However, as mRNA is an obligate intermediary, and because the amounts of mRNAs and proteins are controlled by their synthesis and degradation rates, the cellular amount of a given protein can be attained following different strategies. By studying omics datasets for six expression variables (mRNA and protein amounts, plus their synthesis and decay rates), we previously demonstrated the existence of common expression strategies (CES) for functionally-related genes in the yeastSaccharomyces cerevisiae. Here we extend that study to two other eukaryotes: the distantly related yeastSchizosaccharomyces pombeand cultur…

0301 basic medicineTranscription GeneticRNA StabilityCèl·lulesSaccharomyces cerevisiaeved/biology.organism_classification_rank.speciesSaccharomyces cerevisiaeComputational biologytranscription ratetranslation rateArticle03 medical and health sciences0302 clinical medicinePhylogeneticsGene Expression Regulation FungalGene expressionHumansmRNA stabilityModel organismGenelcsh:QH301-705.5OrganismRegulation of gene expressionbiologyPhylogenetic treeved/biologyProkaryotephenogramGeneral Medicinebiology.organism_classification030104 developmental biologyprotein stabilitylcsh:Biology (General)Schizosaccharomyces pombe030217 neurology & neurosurgeryInteraccions RNA-proteïna
researchProduct

Role of the Non-Canonical RNAi Pathway in the Antifungal Resistance and Virulence of Mucorales

2021

Mucorales are the causal agents for the lethal disease known as mucormycosis. Mortality rates of mucormycosis can reach up to 90%, due to the mucoralean antifungal drug resistance and the lack of effective therapies. A concerning urgency among the medical and scientific community claims to find targets for the development of new treatments. Here, we reviewed different studies describing the role and machinery of a novel non-canonical RNAi pathway (NCRIP) only conserved in Mucorales. Its non-canonical features are the independence of Dicer and Argonaute proteins. Conversely, NCRIP relies on RNA-dependent RNA Polymerases (RdRP) and an atypical ribonuclease III (RNase III). NCRIP regulates the…

AntifungalTransposable element0301 basic medicineMucoralesAntifungal Agentstransposonmedicine.drug_classRNA Stability030106 microbiologyAntifungal drugVirulenceReviewQH426-470mucormycosis03 medical and health sciencesDrug Resistance FungalRNA interferenceFongsmedicineGeneticsbiochemistryRNA MessengerRibonuclease IIIepimutantGenetics (clinical)Genome stabilityGeneticsRdRPR3B2biologyMucormycosisnon-canonical RNAiRNA FungalArgonauteantifungal resistancemedicine.diseasebiology.organism_classificationvirulenceRNA silencing030104 developmental biologyNon canonicalbiology.proteinInfeccióMucoralesRNA Interferencegenome stabilitySignal TransductionDicerGenes
researchProduct

Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae.

2009

Hyperosmotic stress yields reprogramming of gene expression in Saccharomyces cerevisiae cells. Most of this response is orchestrated by Hog1, a stress-activated, mitogen-activated protein kinase (MAPK) homologous to human p38. We investigated, on a genomic scale, the contribution of changes in transcription rates and mRNA stabilities to the modulation of mRNA amounts during the response to osmotic stress in wild-type and hog1 mutant cells. Mild osmotic shock induces a broad mRNA destabilization; however, osmo-mRNAs are up-regulated by increasing both transcription rates and mRNA half-lives. In contrast, mild or severe osmotic stress in hog1 mutants, or severe osmotic stress in wild-type cel…

BioquímicaMessenger RNASaccharomyces cerevisiae ProteinsTranscription GeneticOsmotic shockMRNA destabilizationRNA Stabilityp38 mitogen-activated protein kinasesSaccharomyces cerevisiaeMRNA stabilizationSaccharomyces cerevisiaeBiologybiology.organism_classificationMolecular biologyArticleGenètica molecularCell biologyOsmotic PressureGene Expression Regulation FungalGene expressionOsmotic pressureRNA MessengerMitogen-Activated Protein KinasesMolecular Biology
researchProduct

Intestinal epithelial HuR modulates distinct pathways of proliferation and apoptosis and attenuates small intestinal and colonic tumor development.

2014

Abstract HuR is a ubiquitous nucleocytoplasmic RNA-binding protein that exerts pleiotropic effects on cell growth and tumorigenesis. In this study, we explored the impact of conditional, tissue-specific genetic deletion of HuR on intestinal growth and tumorigenesis in mice. Mice lacking intestinal expression of HuR (Hur IKO mice) displayed reduced levels of cell proliferation in the small intestine and increased sensitivity to doxorubicin-induced acute intestinal injury, as evidenced by decreased villus height and a compensatory shift in proliferating cells. In the context of Apcmin/+ mice, a transgenic model of intestinal tumorigenesis, intestinal deletion of the HuR gene caused a three-fo…

Cancer ResearchPost-translational regulationRNA-binding proteinContext (language use)ApoptosisCell Growth ProcessesBiologymedicine.disease_causeArticleAU-rich RNAMiceGene expressionIntestinal NeoplasmsmedicineAnimalsmRNA stabilityIntestinal MucosaMice KnockoutCell growthMolecular biologyPhenotypeProtein-RNA interactionSmall intestineDisease Models Animalmedicine.anatomical_structureOncologyELAV ProteinsApoptosisColonic NeoplasmsCancer researchCarcinogenesis
researchProduct

Physiological mechanisms regulating the expression of endothelial-type NO synthase

2002

Although endothelial nitric oxide synthase (eNOS) is a constitutively expressed enzyme, its expression is regulated by a number of biophysical, biochemical, and hormonal stimuli, both under physiological conditions and in pathology. This review summarizes the recent findings in this field. Shear stress, growth factors (such as transforming growth factor-beta, fibroblast growth factor, vascular endothelial growth factor, and platelet-derived growth factor), hormones (such as estrogens, insulin, angiotensin II, and endothelin 1), and other compounds (such as lysophosphatidylcholine) upregulate eNOS expression. On the other hand, the cytokine tumor necrosis factor-alpha and bacterial lipopolys…

Cancer Researchmedicine.medical_specialtyNitric Oxide Synthase Type IIIPhysiologyRNA Stabilitymedicine.medical_treatmentClinical BiochemistryBiologyFibroblast growth factorBiochemistryGene Expression Regulation Enzymologicchemistry.chemical_compoundEnosInternal medicinemedicineAnimalsPromoter Regions GeneticRegulation of gene expressionBase SequenceGene Expression ProfilingGrowth factorbiology.organism_classificationActin cytoskeletonAngiotensin IICell biologyVascular endothelial growth factorEndocrinologychemistryNitric Oxide SynthaseSignal transductionSignal TransductionNitric Oxide
researchProduct

Nucleo-cytoplasmic shuttling of RNA-binding factors: mRNA buffering and beyond.

2022

Gene expression is a highly regulated process that adapts RNAs and proteins content to the cellular context. Under steady-state conditions, mRNA homeostasis is robustly maintained by tight controls that act on both nuclear transcription and cytoplasmic mRNA stability. In recent years, it has been revealed that several RNA-binding proteins (RBPs) that perform functions in mRNA decay can move to the nucleus and regulate transcription. The RBPs involved in transcription can also travel to the cytoplasm and regulate mRNA degradation and/or translation. The multifaceted functions of these shuttling nucleo-cytoplasm RBPs have raised the possibility that they can act as mRNA metabolism coordinator…

Cell NucleusCytoplasmRNA StabilityBiophysicsRNA-Binding ProteinsRNA-binding proteinsBiochemistryTranscripció genèticaShuttlingmRNA decayStructural BiologyGeneticsRNARNA MessengerMolecular BiologyCrosstalkTranscriptionInteraccions RNA-proteïna
researchProduct

Yeast mRNA cap-binding protein Cbc1/Sto1 is necessary for the rapid reprogramming of translation after hyperosmotic shock.

2011

Global translation is inhibited in Saccharomyces cerevisiae cells under osmotic stress; nonetheless, osmostress-protective proteins are synthesized. We found that translation mediated by the mRNA cap-binding protein Cbc1 is stress-resistant and necessary for the rapid translation of osmostress-protective proteins under osmotic stress.

Cell PhysiologySaccharomyces cerevisiae ProteinsOsmotic shockRNA StabilitySaccharomyces cerevisiaeCycloheximideBiology03 medical and health scienceschemistry.chemical_compoundGene Knockout TechniquesEukaryotic translationOsmotic PressureStress PhysiologicalPolysomeGene Expression Regulation FungalProtein biosynthesisRNA MessengerMolecular Biology030304 developmental biologyCell Nucleus0303 health sciencesMicrobial ViabilityOsmotic concentration030302 biochemistry & molecular biologyEIF4ENuclear ProteinsTranslation (biology)Cell BiologyArticlesAdaptation PhysiologicalProtein TransportEukaryotic Initiation Factor-4EchemistryBiochemistryRNA Cap-Binding ProteinsPolyribosomesProtein BiosynthesisProtein BindingMolecular biology of the cell
researchProduct

Nuclear Translocation of Mismatch Repair Proteins MSH2 and MSH6 as a Response of Cells to Alkylating Agents

2000

Mammalian mismatch repair has been implicated in mismatch correction, the prevention of mutagenesis and cancer, and the induction of genotoxicity and apoptosis. Here, we show that treatment of cells specifically with agents inducing O(6)-methylguanine in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea, elevates the level of MSH2 and MSH6 and increases GT mismatch binding activity in the nucleus. This inducible response occurs immediately after alkylation, is long-lasting and dose-dependent, and results from translocation of the preformed MutSalpha complex (composed of MSH2 and MSH6) from the cytoplasm into the nucleus. It is not caused by an increase in MSH2 gen…

CytoplasmDNA RepairBase Pair MismatchRNA StabilityChromosomal translocationmedicine.disease_causeBiochemistrychemistry.chemical_compoundMismatch Repair Endonuclease PMS2Adenosine TriphosphatasesNuclear ProteinsMethylnitrosoureaNeoplasm ProteinsDNA-Binding ProteinsMutS Homolog 2 ProteinDNA mismatch repairMutL Protein Homolog 1Protein BindingAlkylating AgentsMethylnitronitrosoguanidinecongenital hereditary and neonatal diseases and abnormalitiesGuanineActive Transport Cell NucleusBiologyCell LineO(6)-Methylguanine-DNA MethyltransferaseProto-Oncogene ProteinsDNA Repair ProteinmedicineHumansRNA MessengerneoplasmsMolecular BiologyAdaptor Proteins Signal TransducingCell NucleusMutagenesisnutritional and metabolic diseasesDNACell BiologyDNA MethylationMolecular biologydigestive system diseasesMSH6DNA Repair EnzymesGene Expression RegulationchemistryMSH2Carrier ProteinsGenotoxicityDNADNA DamageHeLa CellsJournal of Biological Chemistry
researchProduct