Search results for "RNA-Binding Protein"
showing 10 items of 194 documents
m6A modulates neuronal functions and sex determination in Drosophila
2016
N6-methyladenosine RNA (m6A) is a prevalent messenger RNA modification in vertebrates. Although its functions in the regulation of post-transcriptional gene expression are beginning to be unveiled, the precise roles of m6A during development of complex organisms remain unclear. Here we carry out a comprehensive molecular and physiological characterization of the individual components of the methyltransferase complex, as well as of the YTH domain-containing nuclear reader protein in Drosophila melanogaster. We identify the member of the split ends protein family, Spenito, as a novel bona fide subunit of the methyltransferase complex. We further demonstrate important roles of this complex in …
From “Cellular” RNA to “Smart” RNA: Multiple Roles of RNA in Genome Stability and Beyond
2018
Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA…
Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular proces…
2018
This study provides first insights into the involvement of hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID and yeast ALG3 gene, in various putative molecular networks. HNOT/ALG3 encodes two translated transcripts encoding precursor proteins differing in their N-terminus and showing 33% identity with the yeast asparagine-linked glycosylation 3 (ALG3) protein. Experimental evidence for the functional homology of the proteins of fly and man in the N-glycosylation has still to be provided. In this study, using the yeast two-hybrid technique we identify 17 molecular partners of hNOT-1/ALG3-1. We disclose the building of hNOT/ALG3 homodimers and provide experimental evidence f…
Prenatal exposure to mixtures of xenoestrogens and genome-wide DNA methylation in human placenta
2015
BACKGROUND: In utero exposure to xenostrogens may modify the epigenome. We explored the association of prenatal exposure to mixtures of xenoestrogens and genome-wide placental DNA methylation. MATERIALS & METHODS: Sex-specific associations between methylation changes in placental DNA by doubling the concentration of TEXB-alpha exposure were evaluated by robust multiple linear regression. Two CpG sites were selected for validation and replication in additional male born placentas. RESULTS: No significant associations were found, although the top significant CpGs in boys were located in the LRPAP1, HAGH, PPARGC1B, KCNQ1 and KCNQ1DN genes, previously associated to birth weight, Type 2 diabetes…
Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis
2017
Genome-wide association studies (GWASs) have identified loci for erythrocyte traits in primarily European ancestry populations. We conducted GWAS meta-analyses of six erythrocyte traits in 71,638 individuals from European, East Asian, and African ancestries using a Bayesian approach to account for heterogeneity in allelic effects and variation in the structure of linkage disequilibrium between ethnicities. We identified seven loci for erythrocyte traits including a locus (RBPMS/GTF2E2) associated with mean corpuscular hemoglobin and mean corpuscular volume. Statistical fine-mapping at this locus pointed to RBPMS at this locus and excluded nearby GTF2E2. Using zebrafish morpholino to evaluat…
rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type 1/type 2 differences
2018
Myotonic dystrophy type 1 and type 2 (DM1, DM2) are caused by expansions of CTG and CCTG repeats, respectively. RNAs containing expanded CUG or CCUG repeats interfere with the metabolism of other RNAs through titration of the Muscleblind-like (MBNL) RNA binding proteins. DM2 follows a more favorable clinical course than DM1, suggesting that specific modifiers may modulate DM severity. Here, we report that the rbFOX1 RNA binding protein binds to expanded CCUG RNA repeats, but not to expanded CUG RNA repeats. Interestingly, rbFOX1 competes with MBNL1 for binding to CCUG expanded repeats and overexpression of rbFOX1 partly releases MBNL1 from sequestration within CCUG RNA foci in DM2 muscle ce…
In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models
2016
Myotonic dystrophy type 1 (DM1) is a rare multisystemic disorder associated with an expansion of CUG repeats in mutant DMPK (dystrophia myotonica protein kinase) transcripts; the main effect of these expansions is the induction of pre-mRNA splicing defects by sequestering muscleblind-like family proteins (e.g. MBNL1). Disruption of the CUG repeats and the MBNL1 protein complex has been established as the best therapeutic approach for DM1, hence two main strategies have been proposed: targeted degradation of mutant DMPK transcripts and the development of CUG-binding molecules that prevent MBNL1 sequestration. Herein, suitable CUG-binding small molecules were selected using in silico approach…
Defining Ewing and Ewing-like small round cell tumors (SRCT): The need for molecular techniques in their categorization and differential diagnosis. A…
2016
Abstract Background Differentiation of Ewing sarcoma family of tumors (ESFT) and Ewing-like tumors remains problematic. Certain ESFT with morphological and immunohistochemical (IHC) profiles lack the EWSR1-ETS transcript. To improve diagnostic accuracy we investigated the presence of several specific transcripts in 200 small round cell tumors (SRCT) displaying ESFT morphology and immunophenotype in which EWSR1 FISH analysis was non-informative or negative. Design 200 tumors (formalin-fixed, paraffin-embedded) were analyzed by RT-PCR. All tumors were tested for EWSR1-ETS , EWSR1 / WT1 , PAX3 / 7-FOX01 or SYT / SSX transcripts, and the negative tumors were subsequently analyzed for CIC / DUX4…
eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences
2017
Abstract eIF5A is an essential protein involved in protein synthesis, cell proliferation and animal development. High eIF5A expression is observed in many tumor types and has been linked to cancer metastasis. Recent studies have shown that eIF5A facilitates the translation elongation of stretches of consecutive prolines. Activated eIF5A binds to the empty E-site of stalled ribosomes, where it is thought to interact with the peptidyl-tRNA situated at the P-site. Here, we report a genome-wide analysis of ribosome stalling in Saccharomyces cerevisiae eIF5A depleted cells using 5Pseq. We confirm that, in the absence of eIF5A, ribosomes stall at proline stretches, and extend previous studies by …
Beyond the Transport Function of Import Receptors: What’s All the FUS about?
2018
Nuclear import receptors are central players in transporting protein cargoes into the nucleus. Moving beyond this role, four newly published articles describe a function in regulating supramolecular assemblies by fine-tuning the phase separating properties of RNA-binding proteins, which has implications for a variety of devastating neurodegenerative disorders.