Search results for "Radiation Detector"

showing 10 items of 53 documents

Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network

2019

Gravitational wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event was detected in this sear…

binary: massneutron star: binaryAstronomybinary: angular momentumAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsLIMITSclustersLIGOgravitational waveGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01black hole: spinPhysicsintermediate mass black hole binarieNumerical relativityGeneral relativitygravitational wavesgravitational waves; intermediate mass black hole binaries; Advanced LIGO and VirgoPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenastarsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalternative theories of gravitySTARS; CLUSTERS; LIMITSAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black hole0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsSTFCScience & Technology010308 nuclear & particles physicsGravitational waveAdvanced LIGO and Virgointermediate mass black hole binariesRCUKGravitational Wave Physicsblack hole: massMass ratiobinary: compact04.80.NnLIGOgravitational radiation detectorNeutron starVIRGOblack hole: binaryIntermediate-mass black holerelativity theorygravitational radiation: emission95.55.Ymmass ratioDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik07.05.Kflimits[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]CLUSTERSSTARSGravitational waves Black holes (astronomy) Gravitational self force
researchProduct

All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems

2021

Rapidly spinning neutron stars are promising sources of continuous gravitational waves. Detecting such a signal would allow probing of the physical properties of matter under extreme conditions. A significant fraction of the known pulsar population belongs to binary systems. Searching for unknown neutron stars in binary systems requires specialized algorithms to address unknown orbital frequency modulations. We present a search for continuous gravitational waves emitted by neutron stars in binary systems in early data from the third observing run of the Advanced LIGO and Advanced Virgo detectors using the semicoherent, GPU-accelerated, binaryskyhough pipeline. The search analyzes the most s…

binary: orbitneutron star: binaryPhysics and Astronomy (miscellaneous)Astronomybinary [neutron star]AstrophysicsGravitational Waves; LIGO (Observatory); Neutron Stars01 natural sciencesneutron starsGeneral Relativity and Quantum CosmologyMonte Carlo: Markov chainPhysics Particles & Fieldsbinary starsbinary systemsBinary SystemsLIGOgravitational waveQCQBpulsarastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studySettore FIS/03Physicsorbit [binary]General relativityPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical Phenomenabinary stardata analysis methodsensitivity [detector]General relativitygr-qcfrequency [modulation]Populationneutron star: spinFOS: Physical sciencesalternative theories of gravityMarkov chain [Monte Carlo]General Relativity and Quantum Cosmology (gr-qc)Astronomy & AstrophysicsGravitational Waves Neutron Stars Binary Systems LIGO VirgoLIGO (Observatory)emission [gravitational radiation]Pulsarbinary: coalescence0103 physical sciencesBinary starddc:530spin [neutron star]background [gravitational radiation]010306 general physicseducationSTFCOrbital elementsGravitational WavesScience & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiation: backgroundmodulation: frequencyRCUKNeutron StarsLIGOgravitational radiation detectordetector: sensitivityNeutron starVIRGOgravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikcoalescence [binary][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]binary stars; neutron stars
researchProduct

Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

2009

Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector…

compound semiconductorsSiliconcompound semiconductorchemistry.chemical_elementNanotechnologyGermaniumReviewlcsh:Chemical technologyBiochemistryAnalytical Chemistrychemistry.chemical_compoundX-ray and gamma ray spectroscopylcsh:TP1-1185Electrical and Electronic EngineeringInstrumentationcompound semiconductors; CdTe and CdZnTe detectors; X-ray and gamma ray spectroscopyPhysicsSpectrometerbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleWide-bandgap semiconductorCdTe and CdZnTe detectorCdTe and CdZnTe detectorsSemiconductor radiation detectorsAtomic and Molecular Physics and OpticsCadmium telluride photovoltaicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cadmium zinc telluridechemistryOptoelectronicsbusiness
researchProduct

Status of Advanced Virgo

2017

The LIGO and the Virgo collaborations have recently announced the first detections of Gravitational Waves. Due to their weak amplitude, Gravitational Waves are expected to produce a very small effect on free-falling masses, which undergo a displacement of the order of 10-18 m for a Km-scale mutual distance. This discovery showed that interferometric detectors are suitable to reveal such a feeble effect, and therefore represent a new tool for astronomy, astrophysics and cosmology in the understanding of the Universe. To better reconstruct the position of the Gravitational Wave source and increase the signal-to-noise ratio of the events by means of multiple coincidence, a network of detectors…

cosmological modeldetector: performanceVirgo LIGO gravitational waveAstronomyinterferometerQC1-999detector: networkgravitational radiation: direct detection01 natural sciencesCoincidenceCosmologyPhysics and Astronomy (all)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]LIGO010306 general physicsSettore FIS/01Physics010308 nuclear & particles physicsGravitational wavePhysicsDetectorgravitational radiationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomygravitational radiation detectorLIGOdetector: sensitivityInterferometryVIRGOAmplitudePhysics and Astronomygravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides and self-spin effects

2018

We present TEOBResumS, a new effective-one-body (EOB) waveform model for nonprecessing (spin-aligned) and tidally interacting compact binaries.Spin-orbit and spin-spin effects are blended together by making use of the concept of centrifugal EOB radius. The point-mass sector through merger and ringdown is informed by numerical relativity (NR) simulations of binary black holes (BBH) computed with the SpEC and BAM codes. An improved, NR-based phenomenological description of the postmerger waveform is developed.The tidal sector of TEOBResumS describes the dynamics of neutron star binaries up to merger and incorporates a resummed attractive potential motivated by recent advances in the post-Newt…

data analysis methodneutron star: binaryGravitational waves effective-one-bodyAstronomyBinary numberFOS: Physical sciencesalternative theories of gravityGeneral Relativity and Quantum Cosmology (gr-qc)Parameter spacegravitational radiation: direct detection01 natural sciencesGeneral Relativity and Quantum CosmologyNumerical studies of other relativistic binaries; Neutron stars; black holes (astrophysics); Gravitational wavesNeutron starsGravitational wavesGravitationBinary black holebinary: coalescence0103 physical sciencesnumerical methodsblack holes (astrophysics)010306 general physicsGeneral Relativity and Quantum Cosmology; General Relativity and Quantum Cosmologyequation of statePhysics010308 nuclear & particles physicsNumerical studies of other relativistic binarieshigher-order: 0spin: effectGravitational Waves analytical template modeling LIGO Virgo numerical relativity Neutron Stars parameter estimationRadiusbinary: compactLIGOgravitational radiation detectorComputational physicsFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIdetector: sensitivityNeutron starNumerical relativityblack hole: binaryGeneral relativityrelativity theorygravitation: self-force[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]effective-one-body
researchProduct

Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light

2019

Current interferometric gravitational-wave detectors are limited by quantum noise over a wide range of their measurement bandwidth. One method to overcome the quantum limit is the injection of squeezed vacuum states of light into the interferometer's dark port. Here, we report on the successful application of this quantum technology to improve the shot noise limited sensitivity of the Advanced Virgo gravitational-wave detector. A sensitivity enhancement of up to 3.2±0.1 dB beyond the shot noise limit is achieved. This nonclassical improvement corresponds to a 5%-8% increase of the binary neutron star horizon. The squeezing injection was fully automated and over the first 5 months of the thi…

neutron star: binaryGravitational waves detectionGeneral Physics and Astronomy01 natural sciencesvacuum stateNOISEinterferometric detectorLIGOnoise: quantumgravitational waves; squeezing; vacuumSettore FIS/01PhysicsQuantum opticsPhysicsQuantum limitQuantum noiseDetectorPhysical Sciencesgravitational waves squeezed lightinterferometric detectorsGravitational waveSqueezed coherent statePhysics Multidisciplinarysqueezed stateGravitation and AstrophysicshorizonGravitational wavesGeneral Relativity and Quantum CosmologyOpticsSettore FIS/05 - Astronomia e Astrofisica0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]SDG 7 - Affordable and Clean Energy010306 general physicsenhancementAstrophysiqueScience & Technology/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energybusiness.industryShot noisegravitational radiationgravitational waves thermal noisesensitivityLIGOdetector: sensitivityQuantum technology* Automatic Keywords *VIRGOinjectionPhysics and Astronomygravitational radiation detector: interferometerGravitational waves; interferometric detectors; noiseWAVEbusiness[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]gravitational waves nonlinear optics quantum opticsPhysical Review Letters
researchProduct

The advanced Virgo longitudinal control system for the O2 observing run

2020

Following a successful period of data-taking between 2006 and 2011, the Virgo gravitational-wave detector was taken offline for a major upgrade. The changes made to the instrument significantly increased the complexity of the control systems and meant that an extended period of commissioning was required to reach a sensitivity appropriate for science data-taking. This commissioning period was completed in July of 2017 and the second-generation Advanced Virgo detector went on to join the Advanced LIGO detectors in the O2 science run in August of the same year. The upgraded detector was approximately twice as sensitive to binary neutron star mergers as the first-generation instrument. During …

neutron star: binaryPhysics::Instrumentation and DetectorsAstronomycavity: opticalSuspended optical cavities01 natural sciencesGravitational wave detectorsoff-lineGravitational wave detectors; Interferometer; Suspended optical cavities; Control loopsControl loopSuspended optical cavitieLIGOInterferometer010303 astronomy & astrophysicsdetectorsSettore FIS/01Physics[PHYS]Physics [physics]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsGravitational wave detectors Interferometer Suspended optical cavities Control loopsGravitational wave detectorUpgrade[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]upgradecontrol systemGravitational wavelongitudinalAstrophysics::High Energy Astrophysical PhenomenainterferometerAstrophysics::Cosmology and Extragalactic Astrophysicscontrol loops; gravitational wave detectors; interferometer; suspended optical cavitiesgravitational radiation: direct detectionGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black holebinary: coalescence0103 physical sciencesControl loops[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010308 nuclear & particles physicsGravitational wavegravitational radiationAstronomyAstronomy and AstrophysicssensitivityLIGOgravitational radiation detectordetector: sensitivityNeutron star* Automatic Keywords *VIRGOblack hole: binaryControl systemgravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

2017

On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…

neutron star: binary[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]X-ray binaryADVANCED LIGOAstrophysicsKilonovagravitational waves; LIGO; binary neutron star inspiralspin01 natural sciencesLIGOGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Electromagnetic observationsGravitational-wave signals3100 General Physics and AstronomyPoint MassesAstrophysics - High Energy Astrophysical PhenomenaBlack-Hole MergersBinary neutron starsBlack HolesX-ray bursterCoalescing BinariesAstrophysics::High Energy Astrophysical Phenomena10192 Physics InstituteGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesGravitational wavesNeutron starsPhysics and Astronomy (all)ddc:530Electromagnetic spectraNeutrons010308 nuclear & particles physicsVirgoGamma raysAstronomyRCUKVIRGOelectromagneticgravitational radiation: emissionStellar black holeGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Compact Binariesbinary: masscosmological modelAstronomyGeneral Physics and AstronomyAstrophysicsneutron starsGamma ray burstsGeneral Relativity and Quantum CosmologyGravitational wave detectorsUniverseDENSE MATTER010303 astronomy & astrophysicsastro-ph.HEPhysicsSignal to noise ratioSettore FIS/01 - Fisica SperimentaleGravitational effectsFalse alarm rateEQUATION-OF-STATEMergers and acquisitionsgravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]530 PhysicsMERGERSGeneral Relativity and Quantum Cosmology; General Relativity and Quantum Cosmology; astro-ph.HEFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstgravitational radiation: direct detectionMerging[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]GAMMA-RAY BURSTLIGO (Observatory)binary: coalescenceGravitational waves neutron stars gamma-ray burst LIGO Virgo0103 physical sciencesGW151226MASSESSTFCAstrophysics::Galaxy AstrophysicsPhysiqueGravitational wavegravitational radiationPULSARgravitational radiation detectorNeutron starPhysics and AstronomygravitationRADIATIONDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikbinary neutron star inspiralSignal detectionPHYS REV LETT PHYSICAL REVIEW LETTERS
researchProduct

Inference of proto-neutron star properties from gravitational-wave data in core-collapse supernovae

2021

The eventual detection of gravitational waves from core-collapse supernovae (CCSN) will help improve our current understanding of the explosion mechanism of massive stars. The stochastic nature of the late post-bounce gravitational wave signal due to the non-linear dynamics of the matter involved and the large number of degrees of freedom of the phenomenon make the source parameter inference problem very challenging. In this paper we take a step towards that goal and present a parameter estimation approach which is based on the gravitational waves associated with oscillations of proto-neutron stars (PNS). Numerical simulations of CCSN have shown that buoyancy-driven g-modes are responsible …

noiseGravitational-wave observatorygravitational radiation: stochasticAstrophysics::High Energy Astrophysical Phenomenaprotoneutron starDegrees of freedom (physics and chemistry)FOS: Physical sciencesAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciences7. Clean energyGeneral Relativity and Quantum CosmologyEinstein Telescopeeffect: nonlinearsupernova0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]LIGOnumerical calculations010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)equation of statePhysicsSolar massmass: solarEinstein Telescope010308 nuclear & particles physicsGravitational wavegravitational radiationoscillationgravitational radiation detectorLIGOgravitation: collapsedetector: sensitivitystar: massiveSupernovaStarswave: modelVIRGO13. Climate actiongravitational radiation: emission[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]galaxyAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics and astroparticle physics
researchProduct

High Bias Voltage CZT Detectors for High-flux Measurements

2017

In this work, we present the performance of new travelling heater method (THM) grown CZT detectors, recently developed at IMEM-CNR Parma, Italy. Thick planar detectors (3 mm thick) with gold electroless contacts on CZT crystals grown by Redlen Technologies (Victoria BC, Canada) were realized, with a planar cathode covering the detector surface (4.1 x 4.1 mm(2)) and a central anode (2 x 2 mm(2)) surrounded by a guard ring electrode. The detectors, characterized by low leakage currents at room temperature (4.7 nA/cm(2) at 1000 V/cm), allow good room temperature operation even at high bias voltages (> 7000 V/cm). At low rates, the detectors exhibit an energy resolution around 4 % FWIEM at 59.5…

radiation detectorRadiology Nuclear Medicine and ImagingMaterials sciencePreamplifier02 engineering and technology01 natural scienceslaw.inventionlawpixel0103 physical sciencesInstrumentationNuclear and High Energy Physic010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleElectrical engineeringBiasing021001 nanoscience & nanotechnologyPhoton countingCathodeSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)AnodeElectronic Optical and Magnetic MaterialsCZTFull width at half maximumHigh Fluxhigh bias voltageOptoelectronicssemiconductor detector0210 nano-technologybusinessVoltage
researchProduct