Search results for "Radiative transfer"

showing 10 items of 551 documents

Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress

2019

Remote sensing of solar-induced chlorophyll fluorescence (SIF) is a rapidly advancing front in terrestrial vegetation science, with emerging capability in space-based methodologies and diverse application prospects. Although remote sensing of SIF – especially from space – is seen as a contemporary new specialty for terrestrial plants, it is founded upon a multi-decadal history of research, applications, and sensor developments in active and passive sensing of chlorophyll fluorescence. Current technical capabilities allow SIF to be measured across a range of biological, spatial, and temporal scales. As an optical signal, SIF may be assessed remotely using high-resolution spectral sensors in …

010504 meteorology & atmospheric sciencesFIS/06 - FISICA PER IL SISTEMA TERRA E PER IL MEZZO CIRCUMTERRESTRE0208 environmental biotechnologySoil ScienceReview02 engineering and technologyPhotochemical Reflectance Index01 natural sciencesArticleGEO/11 - GEOFISICA APPLICATASIF retrieval methodsRadiative transfer modellingRadiative transfer910 Geography & travelComputers in Earth SciencesChlorophyll fluorescence1111 Soil Science1907 GeologyAirborne instruments0105 earth and related environmental sciencesRemote sensingStress detectionGEO/12 - OCEANOGRAFIA E FISICA DELL'ATMOSFERA1903 Computers in Earth SciencesPrimary productionGeologyVegetationPassive optical techniquesField (geography)020801 environmental engineeringGEO/10 - GEOFISICA DELLA TERRA SOLIDA10122 Institute of GeographySun-induced fluorescenceRemote sensing (archaeology)Sun-induced fluorescence Steady-state photosynthesis Stress detection Radiative transfer modelling SIF retrieval methods. Satellite sensors Airborne instruments Applications Terrestrial vegetation Passive optical techniques. ReviewApplicationsTerrestrial vegetationEnvironmental scienceSatelliteSteady-state photosynthesisSatellite sensors
researchProduct

Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data

2012

River floodplains in the Netherlands serve as water storage areas, while they also have the function of nature rehabilitation areas. Floodplain vegetation is therefore subject to natural processes of vegetation succession. At the same time, vegetation encroachment obstructs the water flow into the floodplains and increases the flood risk for the hinterland. Spaceborne pointable imaging spectroscopy has the potential to quantify vegetation density on the basis of leaf area index (LAI) from a desired view zenith angle. In this respect, hyperspectral pointable CHRIS data were linked to the ray tracing canopy reflectance model FLIGHT to retrieve vegetation density estimates over a heterogeneous…

010504 meteorology & atmospheric sciencesFloodplainWater flowpointable sensors; CHRIS/PROBA; leaf area index (LAI); inversion; radiative transfer (RT) model; FLIGHT; river floodplain ecosystem; vegetation density; hydraulic roughnessleaf area index (LAI)0211 other engineering and technologiesClimate change02 engineering and technologyCHRIS/PROBA01 natural sciencesforestinversionLaboratory of Geo-information Science and Remote SensingLaboratorium voor Geo-informatiekunde en Remote SensingLeaf area indexcoverlcsh:ScienceZenithriver floodplain ecosystem021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensinggeographychris-proba datahyperspectral brdf datageography.geographical_feature_categoryFLIGHTFlood mythrhine basinradiative-transfer modelHyperspectral imagingEnhanced vegetation index15. Life on landpointable sensorsPE&RCradiative transfer (RT) modelsugar-beetclimate-changeGeneral Earth and Planetary SciencesEnvironmental sciencehydraulic roughnesslcsh:Qflow resistanceleaf-area indexvegetation densityRemote Sensing
researchProduct

Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrie…

2021

In forest landscapes affected by fire, the estimation of fractional vegetation cover (FVC) from remote sensing data using radiative transfer models (RTMs) enables to evaluate the ecological impact of such disturbance across plant communities at different spatio-temporal scales. Even though, when landscapes are highly heterogeneous, the fine-scale ground spatial variation might not be properly captured if FVC products are provided at moderate or coarse spatial scales, as typical of most of operational Earth observing satellite missions. The objective of this study was to evaluate the potential of a RTM inversion approach for estimating FVC from satellite reflectance data at high spatial reso…

010504 meteorology & atmospheric sciencesMean squared error0208 environmental biotechnologySoil Science02 engineering and technology01 natural sciencesArticleWorldView-3Radiative transferComputers in Earth SciencesImage resolution0105 earth and related environmental sciencesRemote sensingFractional vegetation coverForest fireGeologyInversion (meteorology)15. Life on landEcología. Medio ambienteRadiative transfer modeling020801 environmental engineering13. Climate actionGround-penetrating radarEnvironmental scienceSatelliteSpatial variabilitySentinel-2Scale (map)Remote Sensing of Environment
researchProduct

Gaussian Processes Retrieval of LAI from Sentinel-2 Top-of-Atmosphere Radiance Data

2020

Abstract Retrieval of vegetation properties from satellite and airborne optical data usually takes place after atmospheric correction, yet it is also possible to develop retrieval algorithms directly from top-of-atmosphere (TOA) radiance data. One of the key vegetation variables that can be retrieved from at-sensor TOA radiance data is leaf area index (LAI) if algorithms account for variability in atmosphere. We demonstrate the feasibility of LAI retrieval from Sentinel-2 (S2) TOA radiance data (L1C product) in a hybrid machine learning framework. To achieve this, the coupled leaf-canopy-atmosphere radiative transfer models PROSAIL-6SV were used to simulate a look-up table (LUT) of TOA radi…

010504 meteorology & atmospheric sciencesMean squared errorComputer science0211 other engineering and technologiesAtmospheric correctionFOS: Physical sciences02 engineering and technology15. Life on land01 natural sciencesAtomic and Molecular Physics and OpticsArticleComputer Science ApplicationsPhysics - Atmospheric and Oceanic PhysicsAtmospheric radiative transfer codesKrigingAtmospheric and Oceanic Physics (physics.ao-ph)RadianceSatelliteComputers in Earth SciencesLeaf area indexScale (map)Engineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing
researchProduct

Vicarious Calibration of the Landsat 7 Thermal Infrared Band and LST Algorithm Validation of the ETM+ Instrument Using Three Global Atmospheric Profi…

2017

Due to problems in the thermal infrared sensor on-board the Landsat-8 satellite, Landsat-7 (L7) can be an interesting alternative source of thermal data because it is the only source of well-calibrated, free, high-resolution data. To contribute to the quality of thermal data, a vicarious calibration (VC) of the enhanced thematic mapper instrument and a validation of the single-channel general equation and the water vapor approach algorithm in conjunction with an inversion of the radiative transfer equation (RTE) have been performed during 2013–2015 over two Spanish test sites. For this purpose, three global atmospheric profile data sets were used to better characterize the error due to atmo…

010504 meteorology & atmospheric sciencesMean squared errorMeteorology0211 other engineering and technologiesAtmospheric correction02 engineering and technologyAtmospheric model01 natural sciencesThematic MapperRadiative transferGeneral Earth and Planetary SciencesEnvironmental scienceRadiometrySatelliteElectrical and Electronic EngineeringAlgorithmWater vapor021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Empirical and physical estimation of Canopy Water Content from CHRIS/PROBA data

2013

20 páginas, 4 tablas, 7 figuras.

010504 meteorology & atmospheric sciencesMean squared errorScience0211 other engineering and technologies02 engineering and technologyCHRIS/PROBA01 natural sciencescanopy water content;model inversion;neural networks;look up tables;empirical up-scalingmodel inversionEmpirical up-scalingAtmospheric radiative transfer codeslook up tablesRadiative transferModel inversion021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsRemote sensingArtificial neural networkCanopy water contentQHyperspectral imagingInversion (meteorology)Sigmoid functionSpectral bandsempirical up-scaling15. Life on landneural networks[SDE]Environmental SciencesGeneral Earth and Planetary SciencesLook up tablescanopy water contentNeural networkscanopy water content; model inversion; neural networks; look up tables; empirical up-scaling; CHRIS/PROBA
researchProduct

Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index

2017

This paper presents and evaluates multitemporal LAI estimates derived from Sentinel-2A data on rice cultivated area identified using time series of Sentinel-1A images over the main European rice districts for the 2016 crop season. This study combines the information conveyed by Sentinel-1A and Sentinel-2A into a high-resolution LAI retrieval chain. Rice crop was detected using an operational multi-temporal rule-based algorithm, and LAI estimates were obtained by inverting the PROSAIL radiative transfer model with Gaussian process regression. Direct validation was performed with in situ LAI measurements acquired in coordinated field campaigns in three countries (Italy, Spain and Greece). Res…

010504 meteorology & atmospheric sciencesMean squared errorScienceleaf area index (LAI)0211 other engineering and technologies02 engineering and technology01 natural sciencesCropAtmospheric radiative transfer codesConsistency (statistics)KrigingSpatial consistencyArròs Malalties i plaguesSentinel-1ALeaf area indexmappingSentinel021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensing2. Zero hungerLeaf Area IndexSentinel-2AQCiències de la terrarice mapGeneral Earth and Planetary SciencesEnvironmental sciencerice map; leaf area index (LAI); Sentinel-1A; Sentinel-2A; Gaussian process regressionRice cropGaussian process regressionRemote Sensing
researchProduct

The 2009 Edition of the GEISA Spectroscopic Database

2011

The updated 2009 edition of the spectroscopic database GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques; Management and Study of Atmospheric Spectroscopic Information) is described in this paper. GEISA is a computer-accessible system comprising three independent sub-databases devoted, respectively, to: line parameters, infrared and ultraviolet/visible absorption cross-sections, microphysical and optical properties of atmospheric aerosols. In this edition, 50 molecules are involved in the line parameters sub-database, including 111 isotopologues, for a total of 3,807,997 entries, in the spectral range from 10-6 to 35,877.031cm-1.The successful performances of the new …

010504 meteorology & atmospheric sciencesMeteorologyTélédétectionPhysique atomique et moléculaireMolecular spectroscopyInfrared atmospheric sounding interferometercomputer.software_genre01 natural sciencesLine parametersAtmospheric radiative transfer0103 physical sciences010303 astronomy & astrophysicsSpectroscopy0105 earth and related environmental sciencesRemote sensingWeb site[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]RadiationSpectroscopic database[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]DatabaseGEISAOptically activeAtmospheric aerosolsMolecular spectroscopyAtomic and Molecular Physics and Optics[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistryOn boardSpectroscopie [électromagnétisme optique acoustique][ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryEarth's and planetary atmospheresEnvironmental scienceAtmospheric absorptionAtmospheric absorptionCross-sectionscomputer
researchProduct

An Estimate of Global, Regional and Seasonal Cirrus Cloud Radiative Effects Contributed by Homogeneous Ice Nucleation

2020

There are two fundamental mechanisms through which cirrus clouds form; homo- and heterogeneous ice nucleation (henceforth hom and het). The relative contribution of each mechanism to ice crystal production often determines the microphysical and radiative properties of a cirrus cloud. This study attempts to estimate the radiative contribution of hom relative to het by constraining the cloud microphysics in a climate model to conform with satellite retrievals of cirrus cloud effective diameter De, where the sampled cirrus cloud base had a temperature T Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite retrievals for cirrus clouds are compared against an updat…

010504 meteorology & atmospheric sciencesMicrophysicsIce crystalsHomogeneousIce nucleusRadiative transferEnvironmental scienceClimate modelCirrusSatelliteAtmospheric sciences01 natural sciences0105 earth and related environmental sciences
researchProduct

The nature of ice-nucleating particles affects the radiative properties of tropical convective cloud systems

2020

Abstract. Convective cloud systems in the maritime tropics play a critical role in global climate, but accurately representing aerosol interactions within these clouds persists as a major challenge for weather and climate modelling. We quantify the effect of ice-nucleating particles (INP) on the radiative properties of a complex Tropical Atlantic deep convective cloud field using a regional model with an advanced double-moment microphysics scheme. Our results show that the domain-mean daylight outgoing radiation varies by up to 18 W m−2 depending on the bio- and physico-chemical properties of INP. The key distinction between different INPs is the temperature dependence of ice formation, whi…

010504 meteorology & atmospheric sciencesMicrophysicsWeather and climateTropical AtlanticRadiationOrders of magnitude (numbers)Atmospheric sciences01 natural sciencesAerosolCondensed Matter::Materials ScienceRadiative transferEnvironmental scienceClimate modelPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciences
researchProduct