Search results for "Radioactive decay"
showing 10 items of 190 documents
αdecay studies of very neutron-deficient francium and radium isotopes
2005
Very neutron-deficient francium and radium isotopes have been produced in fusion evaporation reactions using $^{63}\mathrm{Cu}$ and $^{65}\mathrm{Cu}$ ions on $^{141}\mathrm{Pr}$ targets and $^{36}\mathrm{Ar}$ ions on $^{170}\mathrm{Yb}$ targets. The gas-filled recoil separator RITU was employed to collect the fusion products and to separate them from the scattered beam. The activities were implanted into a position-sensitive silicon detector after passing through a gas-counter system. The isotopes were identified using spatial and time correlations between the implants and decays. Two new \ensuremath{\alpha} decaying radium isotopes, $^{201}\mathrm{Ra}$ and $^{202}\mathrm{Ra}$, were identi…
In-beam study of the 128, 130Xe nuclei
1981
Abstract The level structure of 128,130Xe has been studied in the (α, 2nγ) and (3He, 3nγ) reactions on enriched Te targets using in-beam γ-ray spectroscopic methods. For both nuclei the existing information about positive-parity level structure was enriched and many new negative-parity two-quasiparticle states were observed. Isomeric states with the half-lives of 63 ± 12 ns in 128 Xe and 4.8 ± 0.5 ns in 130 Xe were found. For collective positive-parity states the interacting boson model, and calculations based on Bohr hamiltonian were compared with the experimental data.
A Recoil-Beta Tagging Study of N = Z nucleus [sup 66]As
2011
A Recoil‐Beta Tagging (RBT) experiment was recently performed at the accelerator laboratory at the University of Jyvaskyla in order to identify T = 1 excited states in the medium‐heavy N = Z = 33 nucleus 66As. The fusion‐evaporation reaction 28Si(40Ca,pn)66As was employed at a beam energy of 75 MeV. The experiment was carried out utilising the JUROGAM II γ‐ray spectrometer in conjunction with the gas‐filled recoil separator RITU and the GREAT focal plane spectrometer system. The half‐lives and ordering of the two known isomeric states in 66As have been determined. In addition, several new prompt γ‐ray transitions from excited states both bypassing and decaying to the isomeric states in 66As…
High-Accuracy Mass Determination of Unstable Rb, Sr, Cs, Ba, Fr and Ra Isotopes with a Penning Trap Mass Spectrometer
1991
The majority of masses of radioactive isotopes has been measured by determination of Q-values in nuclear reactions or in nuclear decay. For a long time the use of direct mass determination has been limited to stable isotopes or isotopes close to stability. This changed in the 70’s with magnetic spectrometers put on-line to isotope separators. The Orsay group (Audi et al., 1986) succeeded in measuring the masses in long isotope chains of alkali elements. They impressively demonstrated the possibilities embedded in direct mass determination of isotopes far from stability. The persisting demand for more precise masses of short-lived isotopes (or exotic particles) has prompted during recent yea…
Detailed studies of $^{100}$Mo two-neutrino double beta decay in NEMO-3
2019
The full data set of the NEMO-3 experiment has been used to measure the half-life of the two-neutrino double beta decay of $^{100}$Mo to the ground state of $^{100}$Ru, $T_{1/2} = \left[ 6.81 \pm 0.01\,\left(\mbox{stat}\right) ^{+0.38}_{-0.40}\,\left(\mbox{syst}\right) \right] \times10^{18}$ y. The two-electron energy sum, single electron energy spectra and distribution of the angle between the electrons are presented with an unprecedented statistics of $5\times10^5$ events and a signal-to-background ratio of ~80. Clear evidence for the Single State Dominance model is found for this nuclear transition. Limits on Majoron emitting neutrinoless double beta decay modes with spectral indices of …
The infancy of core-collapse supernova remnants
2020
We present 3D hydrodynamic simulations of neutrino-driven supernovae (SNe) with the PROMETHEUS-HOTB code, evolving the asymmetrically expanding ejecta from shock breakout until they reach the homologous expansion phase after roughly one year. Our calculations continue the simulations for two red supergiant (RSG) and two blue supergiant (BSG) progenitors by Wongwathanarat et al., who investigated the growth of explosion asymmetries produced by hydrodynamic instabilities during the first second of the explosion and their later fragmentation by Rayleigh-Taylor instabilities. We focus on the late time acceleration and inflation of the ejecta caused by the heating due to the radioactive decay of…
r‐Process Abundances and Chronometers in Metal‐poor Stars
1998
Rapid neutron-capture (i.e., r-process) nucleosynthesis calculations, employing internally consistent and physically realistic nuclear physics input (QRPA beta-decay rates and the ETFSI-Q nuclear mass model), have been made. These calculations are compared with ground-based and HST observations of neutron-capture elements in the metal poor halo stars CS 22892--052, HD 115444, HD 122563 and HD 126238. The elemental abundances in all four metal-poor stars are consistent with the solar r-process elemental distribution for the elements Z >/= 56. These results strongly suggest, at least for those elements, that the relative elemental r-process abundances have not changed over the history of t…
Excited states inPd115populated in theβ−decay ofRh115
2010
Excited states in $^{115}\mathrm{Pd}$, populated following the ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of $^{115}\mathrm{Rh}$ have been studied by means of $\ensuremath{\gamma}$ spectroscopy after the Penning-trap station at the IGISOL facility, University of Jyv\"askyl\"a. The $1$$/$$2$${}^{+}$ spin and parity assignment of the ground state of $^{115}\mathrm{Pd}$, confirmed in this work, may indicate a transition to an oblate shape in Pd isotopes at high neutron number.
New calculations of grossβ-decay properties for astrophysical applications: Speeding-up the classicalrprocess
2003
Recent compilations of experimental gross $\ensuremath{\beta}$-decay properties, i.e., half-lives ${(T}_{1/2})$ and neutron-emission probabilities ${(P}_{\mathrm{n}}),$ are compared to improved global macroscopic-microscopic model predictions. The model combines calculations within the quasiparticle (QP) random-phase approximation for the Gamow-Teller (GT) part with an empirical spreading of the QP strength and the gross theory for the first-forbidden part of ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay. Nuclear masses are either taken from the 1995 data compilation of Audi et al., when available, otherwise from the finite-range droplet model. Especially for spherical and neutron-(sub-)mag…
Decay study ofTc114with a Penning trap
2011
The level structure of $^{114}\mathrm{Ru}$ has been investigated via the $\ensuremath{\beta}$ decay of very neutron-rich $^{114}\mathrm{Tc}$ by means of Penning-trap-assisted $\ensuremath{\gamma}$ spectroscopy. The deduced $\ensuremath{\beta}$-decay scheme suggests the existence of two $\ensuremath{\beta}$-decaying states in $^{114}\mathrm{Tc}$ with ${I}^{\ensuremath{\pi}}={1}^{+}$ and $I\ensuremath{\geqslant}$ 4, with half-lives of ${t}_{1/2}({1}^{+})=90(20)$ ms and ${t}_{1/2}(I\ensuremath{\geqslant}4)=100(20)$ ms, respectively. The ${Q}_{\ensuremath{\beta}}$ value, which covers a possible mixture of two states, has been determined to be ${Q}_{\ensuremath{\beta}}=11 785(12)$ keV. The level…