Search results for "Radius"

showing 10 items of 708 documents

New scalar compact objects in Ricci-based gravity theories

2019

Taking advantage of a previously developed method, which allows to map solutions of General Relativity into a broad family of theories of gravity based on the Ricci tensor (Ricci-based gravities), we find new exact analytical scalar field solutions by mapping the free-field static, spherically symmetric solution of General Relativity (GR) into quadratic $f(R)$ gravity and the Eddington-inspired Born-Infeld gravity. The obtained solutions have some distinctive feature below the would-be Schwarzschild radius of a configuration with the same mass, though in this case no horizon is present. The compact objects found include wormholes, compact balls, shells of energy with no interior, and a new …

High Energy Physics - TheoryModified gravityFísica-Modelos matemáticosGeneral relativityGravityFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyTheoretical physicsGeneral Relativity and Quantum Cosmology0103 physical sciencesFísica matemáticaWormhole010306 general physicsRicci curvaturePhysics010308 nuclear & particles physicsScalar (physics)Astronomy and AstrophysicsGR black holesBlack holeHigh Energy Physics - Theory (hep-th)Horizon (general relativity)WormholesScalar fieldSchwarzschild radius
researchProduct

QUANTUM EFFECTS IN ACOUSTIC BLACK HOLES: THE BACKREACTION.

2004

We investigate the backreaction equations for an acoustic black hole formed in a Laval nozzle under the assumption that the motion of the fluid is one-dimensional. The solution in the near-horizon region shows that as phonons are (thermally) radiated the sonic horizon shrinks and the temperature decreases. This contrasts with the behaviour of Schwarzschild black holes, and is similar to what happens in the evaporation of (near-extremal) Reissner-Nordstrom black holes (i.e. infinite evaporation time). Finally, by appropriate boundary conditions the solution is extended in both the asymptotic regions of the nozzle.

High Energy Physics - TheoryNuclear and High Energy PhysicsSonic black holeEvent horizonWhite holeAstrophysics::High Energy Astrophysical PhenomenaHAWKINGFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Charged black holeGeneral Relativity and Quantum CosmologyACOUSTICPhysics::Fluid DynamicsMicro black holeGeneral Relativity and Quantum CosmologyQuantum mechanicsPhysicsBLACK HOLEBACK REACTIONFLUIDCondensed Matter - Other Condensed MatterBlack holeHigh Energy Physics - Theory (hep-th)RADIATIONSchwarzschild radiusOther Condensed Matter (cond-mat.other)Hawking radiation
researchProduct

Backreaction in Acoustic Black Holes

2005

The backreaction equations for the linearized quantum fluctuations in an acoustic black hole are given. The solution near the horizon, obtained within a dimensional reduction, indicates that acoustic black holes, unlike Schwarzschild ones, get cooler as they radiate phonons. They show remarkable analogies with near-extremal Reissner-Nordstrom black holes.

High Energy Physics - TheoryPhysicsACOUSTIC BLACK HOLESonic black holeAstrophysics::High Energy Astrophysical PhenomenaWhite holeBACK REACTIONFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)FLUCTUATIONSFuzzballGeneral Relativity and Quantum CosmologyCondensed Matter - Other Condensed MatterBlack holeGeneral Relativity and Quantum CosmologyMicro black holeHigh Energy Physics - Theory (hep-th)Binary black holeQuantum mechanicsSchwarzschild radiusOther Condensed Matter (cond-mat.other)Hawking radiationPhysical Review Letters
researchProduct

Cosmon Lumps and Horizonless Black Holes

2008

We investigate non-linear, spherically symmetric solutions to the coupled system of a quintessence field and Einstein gravity. In the presence of a scalar potential, we find regular solutions that to an outside observer very closely resemble Schwarzschild black holes. However, these cosmon lumps have neither a horizon nor a central singularity. A stability analysis reveals that our static solutions are dynamically unstable. It remains an open question whether analogous stable solutions exist.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsAstrophysics (astro-ph)FOS: Physical sciencesScalar potentialAstrophysicssymbols.namesakeGeneral Relativity and Quantum CosmologyClassical mechanicsSingularityHigh Energy Physics - Theory (hep-th)symbolsSchwarzschild metricGravitational singularityCircular symmetryEinsteinSchwarzschild radiusQuintessence
researchProduct

Semiclassical zero-temperature corrections to Schwarzschild spacetime and holography

2005

Motivated by the quest for black holes in AdS braneworlds, and in particular by the holographic conjecture relating 5D classical bulk solutions with 4D quantum corrected ones, we numerically solve the semiclassical Einstein equations (backreaction equations) with matter fields in the (zero temperature) Boulware vacuum state. In the absence of an exact analytical expression for in four dimensions we work within the s-wave approximation. Our results show that the quantum corrected solution is very similar to Schwarzschild till very close to the horizon, but then a bouncing surface for the radial function appears which prevents the formation of an event horizon. We also analyze the behavior of…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsCosmologiaQuantum field theory in curved spacetimeEvent horizonWhite holeKerr metricFOS: Physical sciencesNaked singularityGeneral Relativity and Quantum Cosmology (gr-qc)Partícules (Física nuclear)General Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum mechanicsDeriving the Schwarzschild solutionSchwarzschild radiusPhysical Review D
researchProduct

Neutrino pair annihilation ( $$\nu {\bar{\nu }}\rightarrow e^-e^+$$ ν ν ¯ → e - e + ) in the presence of quintessence surrounding a black hole

2021

Quintessence fields, introduced to explain the speed-up of the Universe, might affect the geometry of spacetime surrounding black holes, as compared to the standard Schwarzschild and Kerr geometries. In this framework, we study the neutrino pairs annihilation into electron-positron pairs ($\nu{\bar \nu}\to e^-e^+$) near the surface of a neutron star, focusing, in particular, on the Schwarzschild-like geometry in presence of quintessence fields. The effect of the latter is to increase the minimum photon-sphere radius ($R_{ph}$), increasing in such a way the maximum energy deposition rate near to $R_{ph}$. The rate turns out to be several orders of magnitude greater than the rate computed in …

High Energy Physics - TheoryPhysicsParticle physicsAnnihilationPhysics and Astronomy (miscellaneous)General relativityAstrophysics::High Energy Astrophysical PhenomenaRadiusQC770-798AstrophysicsGeneral Relativity and Quantum CosmologyBlack holeQB460-466Neutron starGeneral Relativity and Quantum CosmologyNuclear and particle physics. Atomic energy. RadioactivityNeutrinoAstrophysics - High Energy Astrophysical PhenomenaEngineering (miscellaneous)Schwarzschild radiusQuintessenceEuropean Physical Journal C: Particles and Fields
researchProduct

Quantum Effects in Black Holes from the Schwarzschild Black String?

2007

The holographic conjecture for black holes localized on a 3-brane in Randall-Sundrum braneworld models RS2 predicts the existence of a classical 5D time dependent solution dual to a 4D evaporating black hole. After briefly reviewing recent criticism and presenting some difficulties in the holographic interpretation of the Gregory-Laflamme instability, we simulate some basic features of such a solution by studying null geodesics of the Schwarzschild black string, in particular those propagating nontrivially in the bulk, and using holographic arguments.

High Energy Physics - TheoryPhysicsPhysics and Astronomy (miscellaneous)GeodesicAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmological constantGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyCosmologyBlack holeTheoretical physicsGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Randall–Sundrum modelBlack stringSchwarzschild metricSchwarzschild radius
researchProduct

Sterile Neutrinos, Black Hole Vacuum and Holographic Principle

2021

We construct an effective field theory (EFT) model that describes matter field interactions with Schwarzschild mini-black-holes (SBH's), treated as a scalar field, $B_0(x)$. Fermion interactions with SBH's require a random complex spurion field, $\theta_{ij}$, which we interpret as the EFT description of "holographic information," which is correlated with the SBH as a composite system. We consider Hawking's virtual black hole vacuum (VBH) as a Higgs phase, $\langle B_0 \rangle =V$. Integrating sterile neutrino loops, the field $\theta_{ij}$ is promoted to a dynamical field, necessarily developing a tachyonic instability and acquiring a VEV of order the Planck scale. For $N$ sterile neutrino…

High Energy Physics - TheorySterile neutrinoParticle physicsPhysics and Astronomy (miscellaneous)FOS: Physical scienceslcsh:AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:QB460-466Effective field theorylcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsVirtual black holeEngineering (miscellaneous)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyOrder (ring theory)Higgs phaseBlack holeHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)lcsh:QC770-798Scalar fieldSchwarzschild radius
researchProduct

Method to compute the stress-energy tensor for a quantized scalar field when a black hole forms from the collapse of a null shell

2020

A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work in the two-dimensional case wh…

High Energy Physics - Theorydimension: 4space-time: SchwarzschildField (physics)Vacuum stateFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)coupling: scalarcoupling: minimal01 natural sciencesGeneral Relativity and Quantum Cosmologyrenormalizationvacuum stateGeneral Relativity and Quantum Cosmologyblack hole: formation0103 physical sciencesStress–energy tensorsymmetry: rotationTensordimension: 2010306 general physicsMathematical physicsPhysics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]010308 nuclear & particles physicsshell modelfield theory: scalarfield theory in curved spacegravitation: collapseBlack holeFormal aspects of field theoryUnruh effectHigh Energy Physics - Theory (hep-th)tensor: energy-momentum[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]quantizationSchwarzschild radiusScalar fieldPhysical Review D
researchProduct

Pseudospectrum and Black Hole Quasinormal Mode Instability

2020

We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymptotic structure, reassessing the instability of the fundamental QNM discussed by Nollert [H. P. Nollert, About the Significance of Quasinormal Modes of Black Holes, Phys. Rev. D 53, 4397 (1996)] as an "infrared" effect; (ii) the instability of all overtones under small-scale ("ultraviolet") perturbations of sufficiently high frequency, which migrate towards universal QNM branches along pseudospec…

High Energy Physics - TheoryperturbationcompactificationQC1-999[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesInstabilityStability (probability)General Relativity and Quantum Cosmologyoperator: spectrumGeneral Relativity and Quantum CosmologyTheoretical physics0103 physical sciencesQuasinormal modestructurenumerical calculations010306 general physicsMathematical PhysicsPseudospectrumPhysicsCompactification (physics)[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]010308 nuclear & particles physicsPhysicsOperator (physics)black hole: stabilityMathematical Physics (math-ph)Schwarzschildquasinormal mode: spectrumBlack holeHigh Energy Physics - Theory (hep-th)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]spectralSchwarzschild radiusPhysical Review X
researchProduct