Search results for "Radius"
showing 10 items of 708 documents
AM1 prediction of the equilibrium geometry of Si60
1993
Abstract AM1 calculations have been carried out to determine the equilibrium geometry of Si 60 . The predicted I h geometry shows that bonds may be clearly identified as single (2.297 A) or aromatic (2.092 A). Several analogies and differences between Si 60 and C 60 are pointed out. Especially remarkable is the bigger size of the Si 60 cluster, which is predicted to have a radius 2 A larger than that of the C 60 cluster. Results are compared to other levels of theory.
Ultrasound velocity and cortical bone characteristics in vivo.
2001
Axial transmission of ultrasound along cortical bone may reflect a combination of material and structural properties of long bone cortices. The goal of this study was to determine the association of speed of sound (SOS) with cortical density (CoD), cortical wall thickness (CWT), and total cortical area (CoA). Quantitative ultrasound (QUS) and peripheral quantitative computed tomography (pQCT) were used to measure the above variables in the distal third of radius and the midshaft of tibia in 51 postmenopausal women aged 62 to 71 years. Univariate regression analysis showed that the site-specific CoD accounted for 34% of the variability in the radial SOS and 29% of that in the tibial SOS (p0.…
84 Enhanced Characterization of the Thickness and Bone Mineral Density of the Radius and Tibia by Low-Frequency Guided-Wave Ultrasound
2009
Detection of Intrinsic Source Structure at ~3 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A*
2018
We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional {\it uv} coverage in the N-S direction, and leads to a spatial resolution of $\sim$30 $\mu$as ($\sim$3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of $\sim$4-13% of the total flux density. We argue th…
A brown dwarf orbiting an M-dwarf:MOA 2009-BLG-411L
2012
Context. Caustic crossing is the clearest signature of binary lenses in microlensing. In the present context, this signature is diluted by the large source star but a detailed analysis has allowed the companion signal to be extracted.Aims. MOA 2009-BLG-411 was detected on August 5, 2009 by the MOA-Collaboration. Alerted as a high-magnification event, it was sensitive to planets. Suspected anomalies in the light curve were not confirmed by a real-time model, but further analysis revealed small deviations from a single lens extended source fit.Methods. Thanks to observations by all the collaborations, this event was well monitored. We first decided to characterize the source star properties b…
Evidence of a sudden increase in the nuclear size of proton-rich silver-96
2021
Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with th…
Proton-neutron pairing correlations in the self-conjugate nucleus 42Sc
2021
Collinear laser spectroscopy of the N=Z=21 self-conjugate nucleus 42Sc has been performed at the JYFL IGISOL IV facility in order to determine the change in nuclear mean-square charge radius between the Iπ=0+ ground state and the Iπ=7+ isomer via the measurement of the 42g,42mSc isomer shift. New multi-configurational Dirac-Fock calculations for the atomic mass shift and field shift factors have enabled a recalibration of the charge radii of the 42−46Sc isotopes which were measured previously. While consistent with the treatment of proton-neutron, proton-proton and neutron-neutron pairing on an equal footing, the reduction in size for the isomer is observed to be of a significantly larger m…
Calibrations and isoperimetric profiles
2007
We equip many noncompact nonsimply connected surfaces with smooth Riemannian metrics whose isoperimetric profile is smooth, a highly nongeneric property. The computation of the profile is based on a calibration argument, a rearrangement argument, the Bol-Fiala curvature dependent inequality, together with new results on the profile of surfaces of revolution and some hardware know-how.
Isotope shifts in natural cerium
2003
High resolution crossed beam resonance fluorescence laser spectroscopy has been performed on an atomic beam of naturally occurring cerium, and isotope shifts have been measured in several transitions. Changes in mean square charge radius, δ〈r 2〉, have been extracted using the King plot technique and show the characteristic increase at the N = 82 neutron shell closure. The measurements form the basis for further investigations of radioactive isotopes and isomers on both sides of the shell closure.
Size Dependence of Tracer Diffusion in Supercooled Liquids
1996
We have determined by forced Rayleigh scattering the diffusion coefficients D of several photochromic tracers with van der Waals radii between 0.38 and 8 nm (the largest ones being photolabeled polystyrene micronetworks) in 10 glass-forming liquids at temperatures between the glass temperature Tg and ∼1.2Tg. The results were analyzed in terms of power law plots, D(T) ∝ T/η(T)ξ, where η is the solvent shear viscosity, and temperature shifts, D(T) ∝ T/η(T + ΔT). The shift ΔT was related with the width of the rotational correlation time distribution via the time−temperature superposition principle.