Search results for "Raft"
showing 10 items of 1545 documents
Linoleic acid: Is this the key that unlocks the quantum brain? Insights linking broken symmetries in molecular biology, mood disorders and personalis…
2017
Abstract In this paper we present a mechanistic model that integrates subneuronal structures, namely ion channels, membrane fatty acids, lipid rafts, G proteins and the cytoskeleton in a dynamic system that is finely tuned in a healthy brain. We also argue that subtle changes in the composition of the membrane’s fatty acids may lead to down-stream effects causing dysregulation of the membrane, cytoskeleton and their interface. Such exquisite sensitivity to minor changes is known to occur in physical systems undergoing phase transitions, the simplest and most studied of them is the so-called Ising model, which exhibits a phase transition at a finite temperature between an ordered and disorde…
Noise-Induced Vascular Dysfunction, Oxidative Stress, and Inflammation Are Improved by Pharmacological Modulation of the NRF2/HO-1 Axis
2021
Vascular oxidative stress, inflammation, and subsequent endothelial dysfunction are consequences of traditional cardiovascular risk factors, all of which contribute to cardiovascular disease. Environmental stressors, such as traffic noise and air pollution, may also facilitate the development and progression of cardiovascular and metabolic diseases. In our previous studies, we investigated the influence of aircraft noise exposure on molecular mechanisms, identifying oxidative stress and inflammation as central players in mediating vascular function. The present study investigates the role of heme oxygenase-1 (HO-1) as an antioxidant response preventing vascular consequences following exposu…
SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidr…
2019
Multidrug resistance (MDR) represents an obstacle in anti-cancer therapy. MDR is caused by multiple mechanisms, involving ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp), which reduces intracellular drug levels to sub-therapeutic concentrations. Therefore, sensitizing agents retaining effectiveness against apoptosis- or drug-resistant cancers are desired for the treatment of MDR cancers. The sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump is an emerging target to overcome MDR, because of its continuous expression and because the calcium transport function is crucial to the survival of tumor cells. Previous studies showed that SERCA inhibitors exhibit anti-c…
Inhibition of STAT3 with the generation 2.5 antisense oligonucleotide, AZD9150, decreases neuroblastoma tumorigenicity and increases chemosensitivity
2017
Abstract Purpose: Neuroblastoma is a pediatric tumor of peripheral sympathoadrenal neuroblasts. The long-term event-free survival of children with high-risk neuroblastoma is still poor despite the improvements with current multimodality treatment protocols. Activated JAK/STAT3 pathway plays an important role in many human cancers, suggesting that targeting STAT3 is a promising strategy for treating high-risk neuroblastoma. Experimental Design: To evaluate the biologic consequences of specific targeting of STAT3 in neuroblastoma, we assessed the effect of tetracycline (Tet)-inducible STAT3 shRNA and the generation 2.5 antisense oligonucleotide AZD9150 which targets STAT3 in three representat…
Combined immunotherapy: CTLA-4 blockade potentiates anti-tumor response induced by transcutaneous immunization.
2017
Abstract Background The epidermal application of the Toll Like Receptor 7 agonist imiquimod and a T-cell peptide epitope (transcutaneous immunization, TCI) mediates systemic peptide-specific cytotoxic T-cell (CTL) responses and leads to tumor protection in a prophylactic tumor setting. However, it does not accomplish memory formation or permanent defiance of tumors in a therapeutic set-up. As a distinct immunologic approach, CTLA-4 blockade augments systemic immune responses and has shown long-lasting effects in preclinical experiments as well as in clinical trials. Objective The study investigates the vaccination capacity of TCI in combination with the checkpoint inhibitor CTLA-4 in matter…
Characterization of the first-in-class T-cell-engaging bispecific single-chain antibody for targeted immunotherapy of solid tumors expressing the onc…
2015
abstract The fetal tight junction molecule claudin 6 (CLDN6) is virtually absent from any normal tissue, whereas it is aberrantly and frequently expressed in various cancers of high medical need. We engineered 6PHU3, a T-cell-engaging bispecific single chain molecule (bi-(scFv)2) with anti-CD3/anti-CLDN6 specificities, and characterized its pharmacodynamic properties. Our data show that upon engagement by 6PHU3, T cells strongly upregulate cytotoxicity and activation markers, proliferate and acquire an effector phenotype. 6PHU3 exerts potent killing of cancer cells in vitro with EC50 values in the pg/mL range. Subcutaneous xenograft tumors in NSG mice engrafted with human PBMCs are eradicat…
Humanized mice in cutaneous leishmaniasis—Suitability analysis of human PBMC transfer into immunodeficient mice
2019
Humanized mice represent a suitable preclinical test system for example therapeutic interventions in various disease settings, including infections. Here, we intended to establish such system for cutaneous leishmaniasis by infecting T, B and NK cell-deficient mice adoptively transferred with human peripheral blood mononuclear cells (PBMC). L major infection led to the establishment of parasite lesions harbouring viable parasites and human T cells, but parasite elimination was not seen due to a species-specific activity of T cell-derived human IFNγ. In addition, up to 50% of infected mice succumbed to severe graft-versus-host disease. In summary, even though long-term disease outcome assessm…
Combined Analysis of Antigen Presentation and T-cell Recognition Reveals Restricted Immune Responses in Melanoma.
2018
Abstract The quest for tumor-associated antigens (TAA) and neoantigens is a major focus of cancer immunotherapy. Here, we combine a neoantigen prediction pipeline and human leukocyte antigen (HLA) peptidomics to identify TAAs and neoantigens in 16 tumors derived from seven patients with melanoma and characterize their interactions with their tumor-infiltrating lymphocytes (TIL). Our investigation of the antigenic and T-cell landscapes encompassing the TAA and neoantigen signatures, their immune reactivity, and their corresponding T-cell identities provides the first comprehensive analysis of cancer cell T-cell cosignatures, allowing us to discover remarkable antigenic and TIL similarities b…
Evolutionary conserved mechanisms pervade structure and transcriptional modulation of allograft inflammatory factor-1 from sea anemone Anemonia virid…
2017
Gene family encoding allograft inflammatory factor-1 (AIF-1) is well conserved among organisms; however, there is limited knowledge in lower organisms. In this study, the first AIF-1 homologue from cnidarians was identified and characterised in the sea anemone Anemonia viridis. The full-length cDNA of AvAIF-1 was of 913 bp with a 5' -untranslated region (UTR) of 148 bp, a 3'-UTR of 315 and an open reading frame (ORF) of 450 bp encoding a polypeptide with149 amino acid residues and predicted molecular weight of about 17 kDa. The predicted protein possesses evolutionary conserved EF hand Ca2+ binding motifs, post-transcriptional modification sites and a 3D structure which can be superimposed …
Actin Filaments Are Involved in the Coupling of V0-V1 Domains of Vacuolar H+-ATPase at the Golgi Complex*
2016
We previously reported that actin-depolymerizing agents promote the alkalization of the Golgi stack and the trans-Golgi network. The main determinant of acidic pH at the Golgi is the vacuolar-type H+-translocating ATPase (V-ATPase), whose V1 domain subunits B and C bind actin. We have generated a GFP-tagged subunit B2 construct (GFP-B2) that is incorporated into the V1 domain, which in turn is coupled to the V0 sector. GFP-B2 subunit is enriched at distal Golgi compartments in HeLa cells. Subcellular fractionation, immunoprecipitation, and inversal FRAP experiments show that the actin depolymerization promotes the dissociation of V1-V0 domains, which entails subunit B2 translocation from Go…