Search results for "Random variable"

showing 10 items of 151 documents

Random Logistic Maps II. The Critical Case

2003

Let (X n )∞ 0 be a Markov chain with state space S=[0,1] generated by the iteration of i.i.d. random logistic maps, i.e., X n+1=C n+1 X n (1−X n ),n≥0, where (C n )∞ 1 are i.i.d. random variables with values in [0, 4] and independent of X 0. In the critical case, i.e., when E(log C 1)=0, Athreya and Dai(2) have shown that X n → P 0. In this paper it is shown that if P(C 1=1)<1 and E(log C 1)=0 then (i) X n does not go to zero with probability one (w.p.1) and in fact, there exists a 0<β<1 and a countable set ▵⊂(0,1) such that for all x∈A≔(0,1)∖▵, P x (X n ≥β for infinitely many n≥1)=1, where P x stands for the probability distribution of (X n )∞ 0 with X 0=x w.p.1. A is a closed set for (X n…

Statistics and ProbabilityCombinatoricsDiscrete mathematicsDistribution (mathematics)Multivariate random variableInitial distributionGeneral MathematicsZero (complex analysis)Random elementProbability distributionStatistics Probability and UncertaintyRandom variableMathematicsJournal of Theoretical Probability
researchProduct

A Unified Approach to Likelihood Inference on Stochastic Orderings in a Nonparametric Context

1998

Abstract For data in a two-way contingency table with ordered margins, we consider various hypotheses of stochastic orders among the conditional distributions considered by rows and show that each is equivalent to requiring that an invertible transformation of the vectors of conditional row probabilities satisfies an appropriate set of linear inequalities. This leads to the construction of a general algorithm for maximum likelihood estimation under multinomial sampling and provides a simple framework for deriving the asymptotic distribution of log-likelihood ratio tests. The usual stochastic ordering and the so called uniform and likelihood ratio orderings are considered as special cases. I…

Statistics and ProbabilityCombinatoricsIndependent and identically distributed random variablesLinear inequalityTransformation (function)Likelihood-ratio testAsymptotic distributionApplied mathematicsConditional probability distributionStatistics Probability and UncertaintyStochastic orderingStatistical hypothesis testingMathematicsJournal of the American Statistical Association
researchProduct

Testing Goodness-of-Fit with the Kernel Density Estimator: GoFKernel

2015

To assess the goodness-of-fit of a sample to a continuous random distribution, the most popular approach has been based on measuring, using either L∞ - or L2 -norms, the distance between the null hypothesis cumulative distribution function and the empirical cumulative distribution function. Indeed, as far as I know, almost all the tests currently available in R related to this issue (ks.test in package stats, ad.test in package ADGofTest, and ad.test, ad2.test, ks.test, v.test and w2.test in package truncgof) use one of these two distances on cumulative distribution functions. This paper (i) proposes dgeometric.test, a new implementation of the test that measures the discrepancy between a s…

Statistics and ProbabilityCumulative distribution functionKernel density estimationProbability density functionKolmogorov–Smirnov testEmpirical distribution functionsymbols.namesakeGoodness of fitStatisticssymbolsStatistics Probability and UncertaintyNull hypothesisRandom variablelcsh:Statisticslcsh:HA1-4737SoftwareMathematicsJournal of Statistical Software
researchProduct

Stochastic order characterization of uniform integrability and tightness

2013

We show that a family of random variables is uniformly integrable if and only if it is stochastically bounded in the increasing convex order by an integrable random variable. This result is complemented by proving analogous statements for the strong stochastic order and for power-integrable dominating random variables. Especially, we show that whenever a family of random variables is stochastically bounded by a p-integrable random variable for some p&gt;1, there is no distinction between the strong order and the increasing convex order. These results also yield new characterizations of relative compactness in Wasserstein and Prohorov metrics.

Statistics and ProbabilityDiscrete mathematicsPure mathematicsRandom fieldMultivariate random variableProbability (math.PR)ta111Random functionRandom element60E15 60B10 60F25Stochastic orderingFunctional Analysis (math.FA)Mathematics - Functional AnalysisRandom variateConvergence of random variablesStochastic simulationFOS: MathematicsStatistics Probability and UncertaintyMathematics - ProbabilityMathematicsStatistics &amp; Probability Letters
researchProduct

Sign test of independence between two random vectors

2003

A new affine invariant extension of the quadrant test statistic Blomqvist (Ann. Math. Statist. 21 (1950) 593) based on spatial signs is proposed for testing the hypothesis of independence. In the elliptic case, the new test statistic is asymptotically equivalent to the interdirection test by Gieser and Randles (J. Amer. Statist. Assoc. 92 (1997) 561) but is easier to compute in practice. Limiting Pitman efficiencies and simulations are used to compare the test to the classical Wilks’ test. peerReviewed

Statistics and ProbabilityDiscrete mathematicsStatistics::TheoryMultivariate random variableExtension (predicate logic)robustnessQuadrant testPitman efficiencyTest (assessment)Exact testStatisticsChi-square testTest statisticSign testaffine invarianceStatistics Probability and UncertaintyIndependence (probability theory)MathematicsWilks’ test
researchProduct

On the use of asymptotic expansion in computing the null distribution of page's L-statistic

1989

Suppose that each out of n randomized complete blocks is obtained by observing a jointly continuous random variable taking values in Rk. Page's L-statistic is given then as a sum of i.i.d. lattice variables with finite moments of any order. Applying a well-known theorem on asymptotic expansions for the distribution function of such a sum yields higher order approximations to the significance probability of any observed value of L. The formula obtained by discarding terms smaller than o(n –1) is still very simple to use. Yet, due to it's strong analytical basis, it can be expected to provide substantial improvement on the traditional normal approximation. The results of extensive numerical i…

Statistics and ProbabilityDistribution functionApproximation errorModeling and SimulationLattice (order)Numerical analysisStatisticsNull distributionAsymptotic expansionRandom variableStatisticMathematicsCommunications in Statistics - Simulation and Computation
researchProduct

Uniform measure density condition and game regularity for tug-of-war games

2018

We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for the associated stopping times and density estimates for the sum of independent and identically distributed random vectors. peerReviewed

Statistics and ProbabilityIndependent and identically distributed random variablesComputer Science::Computer Science and Game Theorygame regularitydensity estimate for the sum of i.i.d. random vectorsTug of war01 natural sciencesMeasure (mathematics)$p$-regularityMathematics - Analysis of PDEsFOS: MathematicsApplied mathematicspeliteoriastochastic games0101 mathematics91A15 60G50 35J92Mathematicsp-harmonic functionsstokastiset prosessit$p$-harmonic functionsosittaisdifferentiaaliyhtälöthitting probability010102 general mathematicsStochastic gametug-of-war gamesProbability (math.PR)uniform measure density condition010101 applied mathematicsNoiseuniform distribution in a ballMathematics - ProbabilityAnalysis of PDEs (math.AP)
researchProduct

Recursive estimation of the conditional geometric median in Hilbert spaces

2012

International audience; A recursive estimator of the conditional geometric median in Hilbert spaces is studied. It is based on a stochastic gradient algorithm whose aim is to minimize a weighted L1 criterion and is consequently well adapted for robust online estimation. The weights are controlled by a kernel function and an associated bandwidth. Almost sure convergence and L2 rates of convergence are proved under general conditions on the conditional distribution as well as the sequence of descent steps of the algorithm and the sequence of bandwidths. Asymptotic normality is also proved for the averaged version of the algorithm with an optimal rate of convergence. A simulation study confirm…

Statistics and ProbabilityMallows-Wasserstein distanceRobbins-Monroasymptotic normalityCLTcentral limit theoremAsymptotic distributionMathematics - Statistics TheoryStatistics Theory (math.ST)01 natural sciencesMallows–Wasserstein distanceonline data010104 statistics & probability[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]60F05FOS: MathematicsApplied mathematics[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematics62L20MathematicsaveragingSequential estimation010102 general mathematicsEstimatorRobbins–MonroConditional probability distribution[STAT.TH]Statistics [stat]/Statistics Theory [stat.TH]Geometric medianstochastic gradient[ STAT.TH ] Statistics [stat]/Statistics Theory [stat.TH]robust estimatorRate of convergenceConvergence of random variablesStochastic gradient.kernel regressionsequential estimationKernel regressionStatistics Probability and Uncertainty
researchProduct

Pairwise Markov properties for regression graphs

2016

With a sequence of regressions, one may generate joint probability distributions. One starts with a joint, marginal distribution of context variables having possibly a concentration graph structure and continues with an ordered sequence of conditional distributions, named regressions in joint responses. The involved random variables may be discrete, continuous or of both types. Such a generating process specifies for each response a conditioning set that contains just its regressor variables, and it leads to at least one valid ordering of all nodes in the corresponding regression graph that has three types of edge: one for undirected dependences among context variables, another for undirect…

Statistics and ProbabilityMarkov chain010102 general mathematicsMixed graphConditional probability distribution01 natural sciencesCombinatorics010104 statistics & probabilityConditional independenceJoint probability distributionMarkov property0101 mathematicsStatistics Probability and UncertaintyMarginal distributionRandom variableMathematicsStat
researchProduct

Elasticity function of a discrete random variable and its properties

2017

ABSTRACTElasticity (or elasticity function) is a new concept that allows us to characterize the probability distribution of any random variable in the same way as characteristic functions and hazard and reverse hazard functions do. Initially defined for continuous variables, it was necessary to extend the definition of elasticity and study its properties in the case of discrete variables. A first attempt to define discrete elasticity is seen in Veres-Ferrer and Pavia (2014a). This paper develops this definition and makes a comparative study of its properties, relating them to the properties shown by discrete hazard and reverse hazard, as both defined in Chechile (2011). Similar to continuou…

Statistics and ProbabilityMathematical optimization021103 operations researchDiscretizationHazard ratio0211 other engineering and technologies02 engineering and technology01 natural sciencesElasticity of a functionContinuous variable010104 statistics & probabilityApplied mathematicsProbability distribution0101 mathematicsElasticity (economics)Random variableMathematicsCommunications in Statistics - Theory and Methods
researchProduct