Search results for "Random variable"
showing 10 items of 151 documents
Random Logistic Maps II. The Critical Case
2003
Let (X n )∞ 0 be a Markov chain with state space S=[0,1] generated by the iteration of i.i.d. random logistic maps, i.e., X n+1=C n+1 X n (1−X n ),n≥0, where (C n )∞ 1 are i.i.d. random variables with values in [0, 4] and independent of X 0. In the critical case, i.e., when E(log C 1)=0, Athreya and Dai(2) have shown that X n → P 0. In this paper it is shown that if P(C 1=1)<1 and E(log C 1)=0 then (i) X n does not go to zero with probability one (w.p.1) and in fact, there exists a 0<β<1 and a countable set ▵⊂(0,1) such that for all x∈A≔(0,1)∖▵, P x (X n ≥β for infinitely many n≥1)=1, where P x stands for the probability distribution of (X n )∞ 0 with X 0=x w.p.1. A is a closed set for (X n…
A Unified Approach to Likelihood Inference on Stochastic Orderings in a Nonparametric Context
1998
Abstract For data in a two-way contingency table with ordered margins, we consider various hypotheses of stochastic orders among the conditional distributions considered by rows and show that each is equivalent to requiring that an invertible transformation of the vectors of conditional row probabilities satisfies an appropriate set of linear inequalities. This leads to the construction of a general algorithm for maximum likelihood estimation under multinomial sampling and provides a simple framework for deriving the asymptotic distribution of log-likelihood ratio tests. The usual stochastic ordering and the so called uniform and likelihood ratio orderings are considered as special cases. I…
Testing Goodness-of-Fit with the Kernel Density Estimator: GoFKernel
2015
To assess the goodness-of-fit of a sample to a continuous random distribution, the most popular approach has been based on measuring, using either L∞ - or L2 -norms, the distance between the null hypothesis cumulative distribution function and the empirical cumulative distribution function. Indeed, as far as I know, almost all the tests currently available in R related to this issue (ks.test in package stats, ad.test in package ADGofTest, and ad.test, ad2.test, ks.test, v.test and w2.test in package truncgof) use one of these two distances on cumulative distribution functions. This paper (i) proposes dgeometric.test, a new implementation of the test that measures the discrepancy between a s…
Stochastic order characterization of uniform integrability and tightness
2013
We show that a family of random variables is uniformly integrable if and only if it is stochastically bounded in the increasing convex order by an integrable random variable. This result is complemented by proving analogous statements for the strong stochastic order and for power-integrable dominating random variables. Especially, we show that whenever a family of random variables is stochastically bounded by a p-integrable random variable for some p>1, there is no distinction between the strong order and the increasing convex order. These results also yield new characterizations of relative compactness in Wasserstein and Prohorov metrics.
Sign test of independence between two random vectors
2003
A new affine invariant extension of the quadrant test statistic Blomqvist (Ann. Math. Statist. 21 (1950) 593) based on spatial signs is proposed for testing the hypothesis of independence. In the elliptic case, the new test statistic is asymptotically equivalent to the interdirection test by Gieser and Randles (J. Amer. Statist. Assoc. 92 (1997) 561) but is easier to compute in practice. Limiting Pitman efficiencies and simulations are used to compare the test to the classical Wilks’ test. peerReviewed
On the use of asymptotic expansion in computing the null distribution of page's L-statistic
1989
Suppose that each out of n randomized complete blocks is obtained by observing a jointly continuous random variable taking values in Rk. Page's L-statistic is given then as a sum of i.i.d. lattice variables with finite moments of any order. Applying a well-known theorem on asymptotic expansions for the distribution function of such a sum yields higher order approximations to the significance probability of any observed value of L. The formula obtained by discarding terms smaller than o(n –1) is still very simple to use. Yet, due to it's strong analytical basis, it can be expected to provide substantial improvement on the traditional normal approximation. The results of extensive numerical i…
Uniform measure density condition and game regularity for tug-of-war games
2018
We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for the associated stopping times and density estimates for the sum of independent and identically distributed random vectors. peerReviewed
Recursive estimation of the conditional geometric median in Hilbert spaces
2012
International audience; A recursive estimator of the conditional geometric median in Hilbert spaces is studied. It is based on a stochastic gradient algorithm whose aim is to minimize a weighted L1 criterion and is consequently well adapted for robust online estimation. The weights are controlled by a kernel function and an associated bandwidth. Almost sure convergence and L2 rates of convergence are proved under general conditions on the conditional distribution as well as the sequence of descent steps of the algorithm and the sequence of bandwidths. Asymptotic normality is also proved for the averaged version of the algorithm with an optimal rate of convergence. A simulation study confirm…
Pairwise Markov properties for regression graphs
2016
With a sequence of regressions, one may generate joint probability distributions. One starts with a joint, marginal distribution of context variables having possibly a concentration graph structure and continues with an ordered sequence of conditional distributions, named regressions in joint responses. The involved random variables may be discrete, continuous or of both types. Such a generating process specifies for each response a conditioning set that contains just its regressor variables, and it leads to at least one valid ordering of all nodes in the corresponding regression graph that has three types of edge: one for undirected dependences among context variables, another for undirect…
Elasticity function of a discrete random variable and its properties
2017
ABSTRACTElasticity (or elasticity function) is a new concept that allows us to characterize the probability distribution of any random variable in the same way as characteristic functions and hazard and reverse hazard functions do. Initially defined for continuous variables, it was necessary to extend the definition of elasticity and study its properties in the case of discrete variables. A first attempt to define discrete elasticity is seen in Veres-Ferrer and Pavia (2014a). This paper develops this definition and makes a comparative study of its properties, relating them to the properties shown by discrete hazard and reverse hazard, as both defined in Chechile (2011). Similar to continuou…