Search results for "Random variable"
showing 10 items of 151 documents
Forest of Normalized Trees: Fast and Accurate Density Estimation of Streaming Data
2018
Density estimation of streaming data is a relevant task in numerous domains. In this paper, a novel non-parametric density estimator called FRONT (forest of normalized trees) is introduced. It uses a structure of multiple normalized trees, segments the feature space of the data stream through a periodically updated linear transformation and is able to adapt to ever evolving data streams. FRONT provides accurate density estimation and performs favorably compared to existing online density estimators in terms of the average log score on multiple standard data sets. Its low complexity, linear runtime as well as constant memory usage, makes FRONT by design suitable for large data streams. Final…
Introducing randomness in the analysis of chemical reactions: An analysis based on random differential equations and probability density functions
2021
[EN] In this work we consider a particular randomized kinetic model for reaction-deactivation of hydrogen peroxide decomposition. We apply the Random Variable Transformation technique to obtain the first probability density function of the solution stochastic process under general conditions. From the rst probability density function, we can obtain fundamental statistical information, such as the mean and the variance of the solution, at every instant time. The transformation considered in the application of the Random Variable Transformation technique is not unique. Then, the first probability density function can take different expressions, although essentially equivalent in terms of comp…
Solving fully randomized higher-order linear control differential equations: Application to study the dynamics of an oscillator
2021
[EN] In this work, we consider control problems represented by a linear differential equation assuming that all the coefficients are random variables and with an additive control that is a stochastic process. Specifically, we will work with controllable problems in which the initial condition and the final target are random variables. The probability density function of the solution and the control has been calculated. The theoretical results have been applied to study, from a probabilistic standpoint, a damped oscillator.
Erratum to “Testing for selectivity in the dependence of random variables on external factors” [J. Math. Psych. 52 (2008) 128–144]
2010
Law of the Iterated Logarithm
2020
For sums of independent random variables we already know two limit theorems: the law of large numbers and the central limit theorem. The law of large numbers describes for large \(n\in \mathbb{N}\) the typical behavior, or average value behavior, of sums of n random variables. On the other hand, the central limit theorem quantifies the typical fluctuations about this average value.
Weibull Model for Dynamic Pricing in e-Business
2011
As is the case with traditional markets, the sellers on the Internet do not usually know the demand functions of their customers. However, in such a digital environment, a seller can experiment different prices in order to maximize his profits. In this paper, we develop a dynamic pricing model to solve the pricing problem of a Web-store, where seller sets a fixed price and buyer either accepts or doesn’t buy. Frequent price changes occur due to current market conditions. The model is based on the two-parameter Weibull distribution (indexed by scale and shape parameters), which is used as the underlying distribution of a random variable X representing the amount of revenue received in the sp…
On a representation theorem for finitely exchangeable random vectors
2016
A random vector $X=(X_1,\ldots,X_n)$ with the $X_i$ taking values in an arbitrary measurable space $(S, \mathscr{S})$ is exchangeable if its law is the same as that of $(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$ for any permutation $\sigma$. We give an alternative and shorter proof of the representation result (Jaynes \cite{Jay86} and Kerns and Sz\'ekely \cite{KS06}) stating that the law of $X$ is a mixture of product probability measures with respect to a signed mixing measure. The result is "finitistic" in nature meaning that it is a matter of linear algebra for finite $S$. The passing from finite $S$ to an arbitrary one may pose some measure-theoretic difficulties which are avoided by our p…
Relations between structure and estimators in networks of dynamical systems
2011
The article main focus is on the identification of a graphical model from time series data associated with different interconnected entities. The time series are modeled as realizations of stochastic processes (representing nodes of a graph) linked together via transfer functions (representing the edges of the graph). Both the cases of non-causal and causal links are considered. By using only the measurements of the node outputs and without assuming any prior knowledge of the network topology, a method is provided to estimate the graph connectivity. In particular, it is proven that the method determines links to be present only between a node and its “kins”, where kins of a node consist of …
Probabilistic Interpretations of Predicates
2016
In classical logic, any m-ary predicate is interpreted as an m-argument two-valued relation defined on a non-empty universe. In probability theory, m-ary predicates are interpreted as probability measures on the mth power of a probability space. m-ary probabilistic predicates are equivalently semantically characterized as m-dimensional cumulative distribution functions defined on \(\mathbb {R}^m\). The paper is mainly concerned with probabilistic interpretations of unary predicates in the algebra of cumulative distribution functions defined on \(\mathbb {R}\). This algebra, enriched with two constants, forms a bounded De Morgan algebra. Two logical systems based on the algebra of cumulative…
Monte Carlo Simulation of a Modified Chi Distribution with Unequal Variances in the Generating Gaussians. A Discrete Methodology to Study Collective …
2020
The Chi distribution is a continuous probability distribution of a random variable obtained from the positive square root of the sum of k squared variables, each coming from a standard Normal distribution (mean = 0 and variance = 1). The variable k indicates the degrees of freedom. The usual expression for the Chi distribution can be generalised to include a parameter which is the variance (which can take any value) of the generating Gaussians. For instance, for k = 3, we have the case of the Maxwell-Boltzmann (MB) distribution of the particle velocities in the Ideal Gas model of Physics. In this work, we analyse the case of unequal variances in the generating Gaussians whose distribution w…