Search results for "Raphe"

showing 10 items of 839 documents

CCDC 1572932: Experimental Crystal Structure Determination

2020

Related Article: Błażej Dziuk, Borys Ośmiałowski, Bartosz Zarychta, Krzysztof Ejsmont, Lilianna Chęcińska|2019|Crystals|9|662|doi:10.3390/cryst9120662

23a5-triphenyl-3aH-34-dioxa-169blambda5-triaza-3alambda5-boraphenaleneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1549500: Experimental Crystal Structure Determination

2017

Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031

2-{[4-(chloroethynyl)phenyl]ethynyl}-13-bis[26-bis(propan-2-yl)phenyl]-45-dihydro-1H-imidazol-3-ium 2-{[4-(bromoethynyl)phenyl]ethynyl}-13-bis[26-bis(propan-2-yl)phenyl]-45-dihydro-1H-imidazol-3-ium tetraphenylborate dichloromethane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Enhanced adhesion and in situ photothermal ablation of cancer cells in surface-functionalized electrospun microfiber scaffold with graphene oxide

2017

The physicochemical characteristics of a biomaterial surface highly affect the interaction with living cells. Recently, much attention has been focused on the adhesion properties of functional biomaterials toward cancer cells, since is expected to control metastatic spread of a tumor, which is related to good probability containing the progression of disease burden. Here, we designed an implantable poly(caprolactone)-based electrospun microfiber scaffold, henceforth PCLMF-GO, to simultaneously capture and kill cancer cells by tuning physicochemical features of the hybrid surface through nitrogen plasma activation and hetero-phase graphene oxide (GO) covalent functionalization. The surface i…

3003business.product_categoryCancer therapyPharmaceutical ScienceNanotechnologyBiocompatible Materials02 engineering and technologyCell capture010402 general chemistry01 natural scienceslaw.inventionPlasmalawNeoplasmsMicrofiberCell AdhesionHumansCell adhesionGraphene oxideHybrid materialChemistryGrapheneBiomaterialOxidesAdhesionPhotothermal therapyPhototherapy021001 nanoscience & nanotechnology0104 chemical sciencesPolycaprolactoneCancer cellMCF-7 CellsSurface modificationGraphite0210 nano-technologybusiness
researchProduct

Nanomechanics of individual aerographite tetrapods

2017

Carbon-based three-dimensional aerographite networks, built from interconnected hollow tubular tetrapods of multilayer graphene, are ultra-lightweight materials recently discovered and ideal for advanced multifunctional applications. In order to predict the bulk mechanical behaviour of networks it is very important to understand the mechanics of their individual building blocks. Here we characterize the mechanical response of single aerographite tetrapods via in situ scanning electron and atomic force microscopy measurements. To understand the acquired results, which show that the overall behaviour of the tetrapod is governed by the buckling of the central joint, a mechanical nonlinear mode…

3D carbon networksMaterials scienceScienceTechnische FakultätHingeGeneral Physics and AstronomyIngenieurwissenschaften [620]Nanotechnology02 engineering and technology010402 general chemistry01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular Biologylaw.inventionUnknownlawTetrapod (structure)Aerographiteddc:5AerographiteAerographite 3D carbon networks porous materialsMultidisciplinaryGrapheneFaculty of EngineeringQarticleGeneral Chemistry021001 nanoscience & nanotechnologyFinite element method6200104 chemical sciencesBucklingddc:500ddc:6200210 nano-technologyPorous mediumScholarlyArticleporous materialsNanomechanicsNature Communications
researchProduct

CCDC 636428: Experimental Crystal Structure Determination

2007

Related Article: J.Konu, T.Chivers, H.M.Tuononen|2006|Inorg.Chem.|45|10678|doi:10.1021/ic061545i

4466-Tetraphenyl-46-diphospha-5-aza-123-triselenin-4-ium iodideSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1572931: Experimental Crystal Structure Determination

2020

Related Article: Błażej Dziuk, Borys Ośmiałowski, Bartosz Zarychta, Krzysztof Ejsmont, Lilianna Chęcińska|2019|Crystals|9|662|doi:10.3390/cryst9120662

4-[3a-fluoro-5-(pentafluorophenyl)-3aH-34-dioxa-169blambda5-triaza-3alambda5-boraphenalen-2-yl]-NN-dimethylanilineSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1952439: Experimental Crystal Structure Determination

2019

Related Article: Asmae Bousfiha, Abdou K. D. Dimé, Amelle Mankou-Makaya, Julie Echaubard, Mathieu Berthelot, Hélène Cattey, Anthony Romieu, Julien Roger, Charles H. Devillers|2020|Chem.Commun.|56|884|doi:10.1039/C9CC07351E

5101520-tetraphenylporphyrin-2-amineSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Tunable Superstructures of Dendronized Graphene Nanoribbons in Liquid Phase

2019

In this Communication, we report the first synthesis of structurally well-defined graphene nanoribbons (GNRs) functionalized with dendritic polymers. The resultant GNRs possess grafting ratios of 0.59-0.68 for the dendrons of different generations. Remarkably, the precise 3D branched conformation of the grafted dendrons affords the GNRs unprecedented 1D supramolecular self-assembly behavior in tetrahydrofuran (THF), yielding nanowires, helices and nanofibers depending on the dimension of the dendrons. The GNR superstructures in THF exhibit near-infrared absorption with maxima between 650 and 700 nm, yielding an optical bandgap of 1.2-1.3 eV. Ultrafast photoconductivity analyses unveil that …

530 PhysicsBand gapChemistry MultidisciplinaryExcitonSupramolecular chemistryNanowireNanotechnology010402 general chemistry01 natural sciencesBiochemistryCatalysisColloid and Surface ChemistryPHOTOCONDUCTIVITYDENDRIMERSSuperstructureScience & TechnologyChemistryBOTTOM-UP SYNTHESISPhotoconductivityGeneral Chemistry530 Physik0104 chemical sciencesELECTRONIC-PROPERTIESChemistryEDGENanofiberPhysical SciencesGraphene nanoribbonsJournal of the American Chemical Society
researchProduct

A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons

2019

Graphene nanoribbons (GNRs) have attracted considerable interest as their atomically tunable structure makes them promising candidates for future electronic devices. However, obtaining detailed information about the length of GNRs has been challenging and typically relies on low-temperature scanning tunneling microscopy. Such methods are ill-suited for practical device application and characterization. In contrast, Raman spectroscopy is a sensitive method for the characterization of GNRs, in particular for investigating their width and structure. Here, we report on a length-dependent, Raman active low-energy vibrational mode that is present in atomically precise, bottom-up synthesized armch…

530 Physicssubstrate transferSTMFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technology010402 general chemistryDFT01 natural sciencessymbols.namesakegraphene nanoribbons; Raman spectroscopy; length-dependent mode; STM; substrate transfer; vibrational modes; DFT540 ChemistryMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials Sciencevibrational modesCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryGeneral EngineeringMode (statistics)Materials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesMolecular vibrationRaman spectroscopysymbols570 Life sciences; biologyOptoelectronicslength-dependent mode0210 nano-technologybusinessRaman spectroscopyGraphene nanoribbonsgraphene nanoribbons
researchProduct

CCDC 1427947: Experimental Crystal Structure Determination

2016

Related Article: Junzhi Liu, Akimitsu Narita, Silvio Osella, Wen Zhang, Dieter Schollmeyer, David Beljonne, Xinliang Feng, and Klaus Müllen|2016|J.Am.Chem.Soc.|138|2602|doi:10.1021/jacs.5b10399

671314-tetrakis(4-t-butylphenyl)-512-diiodobenzo[k]tetraphene dichloromethane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct