6533b82dfe1ef96bd12915c1
RESEARCH PRODUCT
Enhanced adhesion and in situ photothermal ablation of cancer cells in surface-functionalized electrospun microfiber scaffold with graphene oxide
Nicolò MauroCinzia ScialabbaGaetano GiammonaGiovanna Pitarresisubject
3003business.product_categoryCancer therapyPharmaceutical ScienceNanotechnologyBiocompatible Materials02 engineering and technologyCell capture010402 general chemistry01 natural scienceslaw.inventionPlasmalawNeoplasmsMicrofiberCell AdhesionHumansCell adhesionGraphene oxideHybrid materialChemistryGrapheneBiomaterialOxidesAdhesionPhotothermal therapyPhototherapy021001 nanoscience & nanotechnology0104 chemical sciencesPolycaprolactoneCancer cellMCF-7 CellsSurface modificationGraphite0210 nano-technologybusinessdescription
The physicochemical characteristics of a biomaterial surface highly affect the interaction with living cells. Recently, much attention has been focused on the adhesion properties of functional biomaterials toward cancer cells, since is expected to control metastatic spread of a tumor, which is related to good probability containing the progression of disease burden. Here, we designed an implantable poly(caprolactone)-based electrospun microfiber scaffold, henceforth PCLMF-GO, to simultaneously capture and kill cancer cells by tuning physicochemical features of the hybrid surface through nitrogen plasma activation and hetero-phase graphene oxide (GO) covalent functionalization. The surface immobilization of GO implies enhanced cell adhesion and proliferation, promoting the selective adhesion of cancer cells, even if allowing cancer associated fibroblast (CAFs) capture. We also display that the functionalization with GO, thanks to the high near-infrared (NIR) absorbance, enables the discrete photothermal eradication of the captured cancer cells in situ (≈98%).
year | journal | country | edition | language |
---|---|---|---|---|
2017-03-23 |