Search results for "Rare-earth"

showing 10 items of 42 documents

Metallic interconnects for SOFC : characterization of their corrosion resistance in hydrogen/water atmosphere and at the operating temperatures of di…

2006

International audience; Chromia forming alloys are one of the best candidates for the interconnecting materials in solid oxide fuels cells (SOFC). Recent research has enabled to decrease the operating temperature of the SOFC from 1000 °C to 800 °C. However, low electronic conductivity and high volatility of the chromia scale need to be solved to improve performance of interconnects. In the field of high temperature oxidation of metals, it is well known that the addition of reactive elements into alloys or in thin film coatings, improve the oxidation resistance of alloys at high temperature. The elements of the beginning of the lanthanide group and yttrium are the most efficient. The goal of…

Materials Chemistry2506 Metals and AlloysMaterials scienceScanning electron microscopy (SEM)AlloyIron alloyOxide[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]02 engineering and technologyConductivityengineering.material010402 general chemistry01 natural sciences7. Clean energyRare-earth oxidesCorrosionCoatings and FilmsMetalchemistry.chemical_compoundOperating temperatureMaterials ChemistryThin filmChemistry (all)MetallurgySurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsChromia0104 chemical sciencesSurfaces Coatings and FilmsX-ray diffractionSurfacesIron alloy; Metal-organic CVD; Rare-earth oxides; Scanning electron microscopy (SEM); Scanning transmission electron microscopy (STEM); X-ray diffraction; Chemistry (all); Condensed Matter Physics; Surfaces and Interfaces; Surfaces Coatings and Films; Materials Chemistry2506 Metals and AlloysMetal-organic CVDchemistryvisual_artScanning transmission electron microscopy (STEM)visual_art.visual_art_mediumengineering[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technology
researchProduct

Effect of Ce3+ concentration on persistent luminescence of YAGG:Ce3+,Cr3+,Nd3+ nanophosphors obtained by the co-precipitation method

2020

Abstract Synthesis of Y3Al2Ga3O12 garnet (YAGG) nanophosphors co-doped with Ce3+, Cr3+, and Nd3+ ions by co-precipitation is reported. The effect of Ce3+ concentration on the structure of garnet and on optical properties including persistent luminescence was investigated. The X-ray diffraction measurements showed that single garnet phase was obtained. The contraction of the crystallites size was observed with increasing the cerium concentration. The combined emission of three used co-dopants together allows to extend persistent luminescence spectral range. The photoluminescence, excitation and persistent luminescence spectra were collected and the optimal Ce3+ concentration for the highest …

Materials sciencePhotoluminescencePersistent luminescenceThermoluminescenceCoprecipitationAnalytical chemistrychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesThermoluminescenceSpectral lineIonInorganic ChemistryRare-earthsPersistent luminescenceYAGG nanophosphorsElectrical and Electronic EngineeringPhysical and Theoretical ChemistrySpectroscopyOrganic Chemistry021001 nanoscience & nanotechnologyAtomic and Molecular Physics and Optics0104 chemical sciencesElectronic Optical and Magnetic MaterialsCeriumchemistryCrystallite0210 nano-technologyCo-precipitationOptical Materials
researchProduct

Laser-induced time-resolved luminescence in analysis of rare earth elements in apatite and calcite

2021

Laser-induced time-resolved luminescence was used to study rare earth element (REE) containing natural apatite and calcite minerals. The luminescence from 400 nm to 700 nm in the minerals was analyzed with excitation ranges 210–340 nm and 405–535 nm. As an outcome, several useful excitation wavelengths to detect one or more REE from apatite and calcite are reported. The feasibility of selected excitations in e.g. avoiding the disturbance of intense Mn2+ luminescence band, results was demonstrated with a non-gated detector. peerReviewed

Materials sciencespektroskopiaBiophysicsAnalytical chemistryrare earth elements02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryApatitetime-resolved spectroscopylaw.inventionchemistry.chemical_compoundlawkalsiittimineraalitalkuaineanalyysiCalciteRare-earth elementluminesenssiGeneral Chemistrymineralsharvinaiset maametallit021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserAtomic and Molecular Physics and Optics0104 chemical sciencesWavelengthapatiittichemistryvisual_artapatiteTime resolved luminescencevisual_art.visual_art_mediumlaser-induced luminescence0210 nano-technologyLuminescencecalciteExcitation
researchProduct

Singular value decomposition approach to the yttrium occurrence in mineral maps of rare earth element ores using laser-induced breakdown spectroscopy

2017

Laser-induced breakdown spectroscopy (LIBS) has been used in analysis of rare earth element (REE) ores from the geological formation of Norra Kärr Alkaline Complex in southern Sweden. Yttrium has been detected in eudialyte (Na15 Ca6(Fe,Mn)3 Zr3Si(Si25O73)(O,OH,H2O)3 (OH,Cl)2) and catapleiite (Ca/Na2ZrSi3O9·2H2O). Singular value decomposition (SVD) has been employed in classification of the minerals in the rock samples and maps representing the mineralogy in the sampled area have been constructed. Based on the SVD classification the percentage of the yttrium-bearing ore minerals can be calculated even in fine-grained rock samples. peerReviewed

Materials sciencespektroskopiaEudialyteMineralogychemistry.chemical_elementengineering.material010502 geochemistry & geophysics01 natural sciencesAnalytical ChemistryGeological formationSingular value decompositionmineraalitLaser-induced breakdown spectroscopySpectroscopyInstrumentationta116Spectroscopy0105 earth and related environmental sciencesgeographygeography.geographical_feature_categoryMineralRare-earth element010401 analytical chemistrysingular value decompositionYttriumharvinaiset maametallitAtomic and Molecular Physics and Optics0104 chemical sciencesyttriumrock analysischemistryanalyysiengineeringlaser-induced breakdown spectroscopy (LIBS)mineral mappingSpectrochimica Acta Part B: Atomic Spectroscopy
researchProduct

Rare-earth elements and yttrium distributions in mangrove coastal water systems: The western Gulf of Thailand

2005

The concentration of rare-earth elements and yttrium (REY) was investigated in dissolved phase, suspended particulate matter, and seafloor sediments of the western coastal area of the Gulf of Thailand. The samples show Eu and Gd positive anomalies in the shale-normalized REY patterns, especially in the suspended particulate matter. On the other hand, a very high REE content was detected in the coastal waters, probably due to the weathering produced by the Mae Klong river waters on rare-earth element (REE)-rich accessory minerals coming from terrains and mineral deposits cropping out in the studied area. The shale-normalized patterns of yttrium and REE estimated for the dissolved phase show …

MineralEcologySettore BIO/02 - Botanica SistematicaRare earthGeochemistrychemistry.chemical_elementSedimentWeatheringYttriumParticulatesRare-earth elements Gulf of Thailand Eu and Gd anomaliesSeafloor spreadingOceanographychemistryGeneral Earth and Planetary SciencesMangroveEcology Evolution Behavior and SystematicsGeologyGeneral Environmental ScienceChemistry and Ecology
researchProduct

Combined thermodynamic and rare earth element modelling of garnet growth during subduction: Examples from ultrahigh-pressure eclogite of the Western …

2008

Abstract Major and trace element zonation patterns were determined in ultrahigh-pressure eclogite garnets from the Western Gneiss Region (Norway). All investigated garnets show multiple growth zones and preserve complex growth zonation patterns with respect to both major and rare earth elements (REE). Due to chemical differences of the host rocks two types of major element compositional zonation patterns occur: (1) abrupt, step-like compositional changes corresponding with the growth zones and (2) compositionally homogeneous interiors, independent of growth zones, followed by abrupt chemical changes towards the rims. Despite differences in major element zonation, the REE patterns are almost…

MineralRare-earth elementTrace elementGeochemistryMetamorphismEpidoteengineering.materialGeophysicsSpace and Planetary ScienceGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)engineeringEclogiteGeologyAmphiboleGneissEarth and Planetary Science Letters
researchProduct

Lifetime measurements of excited states in $^{162}$W and $^{164}$W and the evolution of collectivity in rare-earth nuclei

2017

International audience; Lifetimes of the first excited 2+ states in the extremely neutron-deficient $^{162}$W and $^{164}$W nuclei have been measured using the recoil distance Doppler shift technique. Experimental B(E2) data for the isotopic chains of hafnium, tungsten, and osmium, from the midshell region near the β-stability line towards the N=82 closed shell and the most neutron-deficient nuclides, are compared with predictions of nuclear deformations and 21+→0g.s.+ reduced transition strengths from different classes of state-of-the-art theoretical model calculations. The results reveal striking differences and deficiencies in the predictive power of current nuclear structure models.

Nuclear Theorylifetimes[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experimentrare-earth nucleiexcited states
researchProduct

Radiation hardening of Rare-Earth doped fiber amplifiers

2012

We investigated the radiation hardening of optical fiber amplifiers operating in space environments. Through a real-time analysis in active configuration, we evaluated the role of Ce in the improvement of the amplifier performance against ionizing radiations. Ce-codoping is an efficient hardening solution, acting both in the limitation of defects in the host glass matrix of RE-doped optical fibers and in the stabilization of lasing properties of the Er3+-ions. On the one hand, in the nearinfrared region, radiation induced attenuation measurements show the absence of radiation induced P-related defect species in host glass matrix of the Ce-codoped active fibers; on the other hand, in the Ce-…

Optical amplifier optical spectroscopy Infrared Spectra Laser Excitation Rare-Earth Elements
researchProduct

Feasibility of Er3+-doped, Ga5Ge20Sb10S65 chalcogenide microstructured optical fiber amplifiers

2009

International audience; The feasibility of a microstructured optical fiber (MOF) amplifier, made of a novel Er3+-doped chalcogenide glass, has been demonstrated via accurate simulations performed by employing an oppositely implemented computer code. The optical and geometrical parameters measured on the first MOF sample together with other physical constants from literature have been taken into account in the simulations. The calculated optical gain of the optimized MOF amplifier, 2.79 m long, is close to 23 dB at the signal wavelength of 1.538 μm, by using a pump power of 200 mW and a signal power of 0.1 μW.

Optical fiberMaterials scienceOptical amplifiersChalcogenideChalcogenide glassRare-earth-doped materials02 engineering and technology01 natural sciences7. Clean energySignallaw.invention010309 opticschemistry.chemical_compoundOpticslaw0103 physical sciencesElectrical and Electronic EngineeringOptical amplifierbusiness.industryAmplifierMicrostructured optical fiber[CHIM.MATE]Chemical Sciences/Material chemistryFibers; Optical amplifiers; Rare-earth-doped materials021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsFibersWavelengthchemistry[ CHIM.MATE ] Chemical Sciences/Material chemistry0210 nano-technologybusiness
researchProduct

Experimental and theoretical study on the optical properties of LaVO4 crystals under pressure

2018

We report optical absorption and luminescence measurements in pure and trivalent neodymium (Nd3+) doped LaVO4 crystals up to 25 GPa. Nd3+ luminescence has been employed as a tool to follow the structural changes in the crystal. We also present band-structure and crystal-field calculations that provide the theoretical framework to accurately explain the observed experimental results. In particular, both optical absorption and luminescence measurements evidence that a phase transition takes place close to 12 GPa. They also provide information on the pressure dependence of the band-gap as well as the emission lines under compression. We found drastic changes in the optical properties of LaVO4 …

Phase transitionMaterials scienceCoordination numberPhysics::OpticsGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologyZIRCON-TYPE LAVO4010402 general chemistry01 natural sciencesNeodymiumMolecular physicsCrystalsymbols.namesakeEU3+ IONSEmission spectrumPhysical and Theoretical ChemistryAbsorption (electromagnetic radiation)AB-INITIO021001 nanoscience & nanotechnologyRARE-EARTH IONS0104 chemical scienceschemistrysymbolsZIRCON-TYPE LAVO4 RARE-EARTH IONS AB-INITIO EU3+ IONS0210 nano-technologyLuminescenceRaman spectroscopy
researchProduct