Search results for "Rays"
showing 10 items of 1136 documents
Comparison of the H-alpha circumstellar disks in Be/X-ray binaries and Be stars
2000
We present a comparative study of the circumstellar disks in Be/X-ray binaries and isolated Be stars based upon the H-alpha emission line. From this comparison it follows that the overall structure of the disks in the Be/X-ray binaries is similar to the disks of other Be stars, i.e. they are axisymmetric and rotationally supported. The factors for the line broadening (rotation and temperature) in the disks of the Be stars and the Be/X-ray binaries seem to be identical. However, we do detect some intriguing differences between the envelopes. On average, the circumstellar disks of the Be/X-ray binaries are twice as dense as the disks of the isolated Be stars. The different distribution of the…
Updated orbital ephemeris of the ADC source X 1822-371: a stable orbital expansion over 40 years
2019
The source X 1822-371 is an eclipsing compact binary system with a period close to 5.57 hr and an orbital period derivative $\dot{P}_{\rm orb}$ of 1.51(7)$\times 10^{-10}$ s s$^{-1}$. The very large value of $\dot{P}_{\rm orb}$ is compatible with a super-Eddington mass transfer rate from the companion star, as suggested by X-ray and optical data. The XMM-Newton observation taken in 2017 allows us to update the orbital ephemeris and verify whether the orbital period derivative has been stable over the last 40 yr. We added to the X-ray eclipse arrival times from 1977 to 2008 two new values obtained from the RXTE and XMM-Newton observations performed in 2011 and 2017, respectively. We estimate…
X-ray emitting structures in the Vela SNR: ejecta anisotropies and progenitor stellar wind residuals
2021
The Vela supernova remnant (SNR) shows several ejecta fragments protruding beyond the forward shock (shrapnel). Recent studies have revealed high Si abundance in two shrapnel (A and G), located in opposite directions with respect to the SNR center. This suggests the possible existence of a Si-rich jet-counterjet structure. We analyzed an XMM-Newton observation of a bright clump, behind shrapnel G, which lies along the direction connecting A and G. The aim is to study the physical and chemical properties of this clump to ascertain whether it is part of this putative jet-like structure. We produced background-corrected and adaptively-smoothed count-rate images and median photon energy maps, a…
Indications of non-conservative mass-transfer in AMXPs
2019
Context. Since the discovery of the first Accreting Millisecond X-ray Pulsar SAX J1808.4-3658 in 1998, the family of these sources kept growing on. Currently, it counts 22 members. All AMXPs are transients with usually very long quiescence periods, implying that mass accretion rate in these systems is quite low and not constant. Moreover, for at least three sources, a non-conservative evolution was also proposed. Aims. Our purpose is to study the long term averaged mass-accretion rates in all the Accreting Millisecond X-ray Pulsars discovered so far, to investigate a non-conservative mass-transfer scenario. Methods. We calculated the expected mass-transfer rate under the hypothesis of a con…
Effects of radiation in accretion regions of classical T Tauri stars
2019
Models and observations indicate that the impact of matter accreting onto the surface of young stars produces regions at the base of accretion columns, in which optically thin and thick plasma components coexist. Thus an accurate description of these impacts requires to account for the effects of absorption and emission of radiation. We study the effects of radiation emerging from shock-heated plasma in impact regions on the structure of the pre-shock downfalling material. We investigate if a significant absorption of radiation occurs and if it leads to a pre-shock heating of the accreting gas. We developed a radiation hydrodynamics model describing an accretion column impacting onto the su…
Galactic Cosmic-Ray Anisotropy in the Northern hemisphere from the ARGO-YBJ Experiment during 2008-2012
2018
This paper reports on the observation of the sidereal large-scale anisotropy of cosmic rays using data collected by the ARGO-YBJ experiment over 5 years (2008-2012). This analysis extends previous work limited to the period from 2008 January to 2009 December, near the minimum of solar activity between cycles 23 and 24. With the new data sample, the period of solar cycle 24 from near minimum to maximum is investigated. A new method is used to improve the energy reconstruction, allowing us to cover a much wider energy range, from 4 to 520 TeV. Below 100 TeV, the anisotropy is dominated by two wide regions, the so-called “tail-in” and “loss-cone” features. At higher energies, a dramatic change…
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
2012
Astroparticle physics 44, 40 - 58 (2013). doi:10.1016/j.astropartphys.2013.01.016
Radiative accretion shocks along nonuniform stellar magnetic fields in classical T Tauri stars
2013
(abridged) AIMS. We investigate the dynamics and stability of post-shock plasma streaming along nonuniform stellar magnetic fields at the impact region of accretion columns. We study how the magnetic field configuration and strength determine the structure, geometry, and location of the shock-heated plasma. METHODS. We model the impact of an accretion stream onto the chromosphere of a CTTS by 2D axisymmetric magnetohydrodynamic simulations. Our model takes into account the gravity, the radiative cooling, and the magnetic-field-oriented thermal conduction. RESULTS. The structure, stability, and location of the shocked plasma strongly depend on the configuration and strength of the magnetic f…
Gamma-Ray Flares from Mrk421 in 2008 observed with the ARGO-YBJ detector
2010
In 2008 the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at gamma ray energies E > 0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6) 10^-1…
The Mouse That Roared: A Superflare from the dMe Flare Star EV Lac Detected by Swift and Konus-Wind
2010
We report on a large stellar flare from the nearby dMe flare star EV Lac observed by the Swift and Konus-Wind satellites and the Liverpool Telescope. It is the first large stellar flare from a dMe flare star to result in a Swift trigger based on its hard X-ray intensity. Its peak f_X from 0.3--100 keV of 5.3x10^-8 erg/cm2/s is nearly 7000 times larger than the star's quiescent coronal flux, and the change in magnitude in the white filter is >4.7. This flare also caused a transient increase in EV Lac's bolometric luminosity (L_bol) during the early stages of the flare, with a peak estimated L_X/L_bol ~3.1. We apply flare loop hydrodynamic modeling to the plasma parameter temporal changes …